0

My question is quite simple: how to prove that $(X^y - X) \bmod 3 = 0$ when $y$ is odd and $y > 1$, and $x $ is an integer greater than $1$?

Examples:

$(2^3-2)/3=2$

$(11^3-11)/3=440$

$(7^5-7)/3=5600$

$(49^3-49)/3=39200$

$(13^7-13)/3=20916168$

Not always true for when $y=2$ (or other even numbers) examples:

$(5^2-5)/3 = 6.6666666\ldots$

$(5^4-5)/3 = 206.666666\ldots$

$(11^2-11)/3 = 36.666666\ldots$

Isaac Brenig
  • 1,415

0 Answers0