My question is quite simple: how to prove that $(X^y - X) \bmod 3 = 0$ when $y$ is odd and $y > 1$, and $x $ is an integer greater than $1$?
Examples:
$(2^3-2)/3=2$
$(11^3-11)/3=440$
$(7^5-7)/3=5600$
$(49^3-49)/3=39200$
$(13^7-13)/3=20916168$
Not always true for when $y=2$ (or other even numbers) examples:
$(5^2-5)/3 = 6.6666666\ldots$
$(5^4-5)/3 = 206.666666\ldots$
$(11^2-11)/3 = 36.666666\ldots$