We can see this problem as an application of $Cesaro$ criterion.
Let $(S_{n})$ be a sequence of real numbers which converges to $S$, define
$${\displaystyle A_{n}:=\sum _{m=1}^{n}S_{m}=S_{1}+\dots +S_{n},\quad b_{n}:=n}$$
then $\displaystyle (b_{n})$ is strictly increasing and diverges to $\displaystyle +\infty $ . Now we compute
$$\displaystyle \lim _{n\to \infty }{\frac {A_{n+1}-A_{n}}{b_{n+1}-b_{n}}}=\lim _{n\to \infty }S_{n+1}=\lim _{n\to \infty }S_{n}=S$$
and so
$$\displaystyle \lim _{n\to \infty }{\frac {S_{1}+\dots +S_{n}}{n}}=\lim _{n\to \infty }S_{n}$$
So in general given any sequence $\displaystyle (S_{n})_{n\geq 1}$ of real numbers, suppose that
$$\displaystyle \lim _{n\to \infty }S_{n}$$ exists (finite or infinite), then
$$\displaystyle \lim _{n\to \infty }{\frac {S_{1}+\dots +S_{n}}{n}}=\lim _{n\to \infty }S_{n}=S$$