Let ${\sf ZFCU}$ be the axioms of ${\sf ZFC}$ modified to allow for urelements in the usual way. We do not assume that the urelements form a set.
I want to know whether ${\sf ZFCU}$ plus the axiom schema of collection---i.e.:
(Collection) $\forall x\exists y \phi(x, y) \to \forall z\exists w\forall x\in z\exists y\in w \phi(x, y)$
implies schematic dependent choice---i.e.:
(SDC) $\forall x\exists y\phi(x, y) \to \forall z\exists f(f(0) = z \wedge \forall n\phi(f(n), f(n+1)))$