Let $y=x^2$ and $y=t^4$ $$\frac{\mathrm{d}y}{\mathrm{d}x}=2x$$ $$\frac{\mathrm{d}y}{\mathrm{d}t}=4t^3$$
Now, $\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)=\frac{\mathrm{d}}{\mathrm{d}t}\left(2x\right)=\frac{\mathrm{d}}{\mathrm{d}t}\left(2t^2\right)=4t$
$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)=\frac{\mathrm{d}}{\mathrm{d}x}\left(4t^3\right)=\frac{\mathrm{d}}{\mathrm{d}x}\left(4x^{\frac{3}{2}}\right)=6t$
Why am I getting $\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)$ is not equal to $\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)$? Isn't it a law of calculus?