Here is what observed for the results of $m\, 9$s $\times n\, 9$s ($m \leq n$)
$9\times9=81, 9\times99=891, 9\times999=8991$
$99\times99=9801, 99\times 999=98901, 99\times9999=989901$
$999\times999=998001,999\times 9999=9989001, 999\times99999=99899001$
Summarize the following trick to get the result fast:
For example to get $999\times99999 =99899001$
- Write down $n\,$$9$s $(n=5)$ first : $\to 99999$
- Replace the $m\,$th $(m=3) 9\,$s with $8: \to 99899$
- Attach $ (m-1)\, 0$s $(m-1=2): \to 99899 00$
- Attach last $1: \to 99899 00 1$
My question is how to prove this is true with algebra?
=$(10.10^{m+n-1}-10^{m+n-1})+(10.10^{m+n-2}-10^{m+n-2})+...+[$only 8$ ] (10.10^{m+n-n}-2.10^{m})$+ $ (10.10^{m-1}-10^{m-1})+....$ last 9 $+0.10^{n-1}+...+0.10^1+1$
– Star Bright Mar 04 '21 at 23:21