Determine the number of integer solutions of the equation $$ x_{1}+x_{2}+x_{3}+x_{4}=20 $$ under the restrictions: $$ \begin{array}{l} 2 \leq x_{1} \leq 6 \\ 0 \leq x_{2} \leq 5 \\ 2 \leq x_{3} \leq 8 \\ 2 \leq x_{4} \leq 6 \end{array} $$ I did $x_1=y_1+2$ then $0\leq y_1 \leq4$
$x_2=y_2$ then $0\leq y_2 \leq5$
$x_3=y_3+2$ then $0\leq y_3 \leq6$
$x_4=y_4+2$ then $0\leq y_4 \leq4$
So $y_1+y_2+y_3+y_4 \leq 19$ So the number of solutions is
$\sum_{k=0}^{19}\left(\begin{array}{c} k+3 \\ k \end{array}\right)=\sum_{k=0}^{19}\left(\begin{array}{c} k+3 \\ 3 \end{array}\right)$ is right?