3

How to show $\displaystyle\int_{-\infty}^{\infty} \frac{\sin \left( x\right )}{x} \mathrm{d}x = \int_{-\infty}^{\infty} \frac{\sin ^ 2\left( x\right )}{x^2} \mathrm{d}x$ ?

I've found this identity in this post. Following the comment by rnorris in that post "use integration by parts, starting from the right-hand side. Let $u=\sin^2(x)$, and $dv=x^{-2}dx$. Look at trig identities that involve the product $\sin(x)\cos(x)$."

I arrived to $$-\dfrac{\sin^2(x)}{x}\Big\vert_{-\infty}^{\infty}+\int_{-\infty}^{\infty}\dfrac{\sin(2x)}{x}\mathrm dx$$ where I used the trig identity $\sin(x+y)=\sin(x)\cos(x)+\cos(x)\sin(x)$ to change $\sin(x)\cos(x)$.

Could someone tell me what can be done next?

I don't see how I could modify the integral to have $\displaystyle\int_{-\infty}^{\infty} \frac{\sin \left( x\right )}{x} \mathrm{d}x $

Also, the trig identity $\sin(x+y)=\sin(x)\cos(x)+\cos(x)\sin(x)$, was that the one to be applied in the first place?

Thanks in advance.

3 Answers3

3

Instead of using the trig identity you should do a change of variable.

Let $u = 2x$.

Spencer
  • 12,271
1

Since this $$\int_{-\infty}^{\infty} \frac{\sin \left( x\right )}{x} \mathrm{d}x=\int_{-\infty}^{\infty} \frac{\sin^2\left( x\right )}{x^2} \mathrm{d}x$$ is really beautiful, I'am not satisfied to be a bystander. The left one is mostly known and we can evaluate the right one by Laplace techniques since both are even. \begin{align} \int_{-\infty}^{\infty}\sin^2\left( x\right )\frac{1}{x^2}\mathrm{d}x&=2\int_0^{\infty}\mathcal{L}\left[\sin^2\left(t\right)\right](x)\mathcal{L}^{-1}\left[\frac{1}{s^2}\right](x)\mathrm{d}x\\ &=2\int_0^{\infty}\frac{2}{4x + x^3}x\mathrm{d}x\\ &=2\int_0^{\infty}\frac{2}{2^2+ x^2}\mathrm{d}x\\ &=\pi. \end{align}

MathArt
  • 1,053
0

Let $ax=t$ $$I=\int_{-\infty}^{\infty} \frac{\sin ax}{x} dx=\int_{-\infty}^{\infty} \frac{\sin t}{t} dt$$ $I$ is independent of $a$.

Z Ahmed
  • 43,235