I would like some help to prove the following equality : $$\sum_{i=0}^n \binom{n}i^2=\binom{2n}n$$ I wanted to do a proof by induction : $$\sum_{i=0}^{n+1} \binom{n+1}i^2=1+\sum_{i=1}^{n+1} \binom{n+1}i^2=1 + \sum_{i=0}^{n} \binom{n+1}{i+1}^2=1+\sum_{i=0}^{n} \bigg(\binom{n+1}i+\binom{n}{i+1}\bigg)^2$$ $$\sum_{i=0}^{n+1} \binom{n+1}i^2=1+\sum_{i=0}^{n} \bigg(\binom{n}i^2+2\binom{n}i\binom{n}{i+1}+\binom{n}{i+1}^2\bigg)=1+\binom{2n}n+ \sum_{i=0}^{n} 2\binom{n}i\binom{n}{i+1} +(\sum_{i=0}^n \binom{n}i^2-1) $$ $$\sum_{i=0}^{n+1} \binom{n+1}i^2=2\binom{2n}n+\sum_{i=0}^{n} 2\binom{n}i\binom{n}{i+1}=2\bigg(\sum_{i=0}^n \binom{n}i^2(1+\frac{n-i}{i+1})\bigg)=2(n+1)\bigg(\sum_{i=0}^n \binom{n}i^2\frac{1}{i+1}\bigg)$$
But now I'm stuck.