For a research work I ended up needing to give a proof of Zeta's trivial zeros, in order to do so I tried using the Abel-Plana formula.
$\zeta(s)=\frac{2^{s-1}}{s-1}-2^{s}\int_{0}^{\infty} \frac{\sin(s\cdot \arctan(t))}{(e^{t\pi}+1)(1+t^2)^{\frac{s}{2}}} \,dt \implies \frac{2^{-2k-1}}{-2k-1}=-2^{-2k}\int_{0}^{\infty} \frac{\sin[2k\cdot \arctan(t)]}{(e^{t\pi}+1)(1+t^2)^{-k}} \,dt$
In the above equation -2k represents the even negative integer, after some development using the complex form of Sin and Arctan I ended up at the following stalemate.
$\frac{1}{2i}\int_{0}^{\infty} \frac{(1+it)^{2k} - (1-it)^{2k}}{(e^{t\pi}+1)} \,dt = \frac{1}{4k+2}$
Willing to verify my result for $k=1 \implies \zeta(-2)$ I managed to find the following:
$\int_{0}^{\infty}\frac{2t}{(e^{t\pi}+1)} \,dt=\frac{1}{6}$
However my competences in calculus give me no clue on how to directly justify this last equality.