Those two exponents are very even (meaning have many factors of $2$), so let's apply difference of squares a few times, hoping that we can get a useful factor that is much smaller.
\begin{align*}
17^{48} - 5^{24} &= (17^{24} - 5^{12})(17^{24} + 5^{12}) \\
&= (17^{12} - 5^{6})(17^{12} + 5^{6})(17^{24} + 5^{12}) \\
&= (17^{6} - 5^{3})(17^{6} + 5^{3})(17^{12} + 5^{6})(17^{24} + 5^{12})
\end{align*}
$39 = 3 \cdot 13$. If $3$ divides any of these factors and $13$ divides any of these factors, $39$ divides the original quantity. If $3$ divides a quantity, that quantity is congruent to $0 \pmod{3}$. If $13$ divides a quantity, that quantity is congruent to $0 \pmod{13}$.
Let's compute $17^6 - 5^3 \pmod{3}$. \begin{align*}
17^6 &\cong (-1)^6 \pmod{3} \\
&\cong 1 \pmod{3} \text{ and } \\
5^3 &\cong 1^3 \pmod{3} \\
&\cong 1 \pmod{3} \text{, so} \\
17^6 - 5^3 &\cong 1 - 1 \pmod{3} \\
&\cong 0 \pmod{3} \text{.}
\end{align*}
Therefore, $3$ divides the first factor.
Now let's compute $17^6 - 5^3 \pmod{13}$. It is useful to note that $6 = 4+2 = 110_2$ in binary, so $17^6 = 17^{4+2} = 17^4 \cdot 17^2$ and we can get $17^4$ by squaring $17^2$. (For more on this, see exponentiation by squaring and its application to modular exponentiation.)
\begin{align*}
17^2 &\cong (4)^2 \pmod{13} \\
&\cong 16 \pmod{13} \\
&\cong 3 \pmod{13} \text{ and } \\
17^4 &\cong (17^2)^2 \pmod{13} \\
&\cong (3)^2 \pmod{13} \\
&\cong 9 \pmod{13} \text{ so } \\
17^6 &\cong 17^4 \cdot 17^2 \pmod{13} \\
&\cong 9 \cdot 3 \pmod{13} \\
&\cong 27 \pmod{13} \\
&\cong 1 \pmod{13} \text{ and also } \\
5^3 &\cong 5 \cdot 5 \cdot 5 \pmod{13} \\
&\cong 25 \cdot 5 \pmod{13} \\
&\cong (-1) \cdot 5 \pmod{13} \\
&\cong 8 \cdot 5 \pmod{13} \text{ so } \\
17^6 - 5^3 &\cong 1 - 8 \pmod{13} \\
&\cong -7 \pmod{13} \\
&\cong 6 \pmod{13} \text{.}
\end{align*}
So $13$ doesn't divide the first factor. How about the second factor? \begin{align*}
17^6 + 5^3 &\cong 1 + 8 \pmod{13} \\
&\cong 9 \pmod{13}
\end{align*}
Nope. The third factor? \begin{align*}
17^{12} + 5^6 &\cong (17^6)^2 + (5^3)^2 \pmod{13} \\
&\cong 1^2 + 8^2 \pmod{13} \\
&\cong 65 \pmod{13} \\
&\cong 5 \cdot 13 \pmod{13} \\
&\cong 0 \pmod{13} \\
\end{align*}
So $13$ divides the third factor. Therefore, $39$ divides the given quantity.
Here's another method that is more direct.
\begin{align*}
17^{48} - 5^{24}
&\cong 17^{3 \cdot 2 \cdot 2 \cdot 2 \cdot 2 } - 5^{3 \cdot 2 \cdot 2 \cdot 2} \pmod{39} \\
&\cong (17^3)^{2 \cdot 2 \cdot 2 \cdot 2 } - (5^3)^{2 \cdot 2 \cdot 2} \pmod{39} \\
&\cong (4913)^{2 \cdot 2 \cdot 2 \cdot 2 } - (125)^{2 \cdot 2 \cdot 2} \pmod{39} \\
&\cong (125\cdot 39 + 38)^{2 \cdot 2 \cdot 2 \cdot 2 } - (3 \cdot 39 + 8)^{2 \cdot 2 \cdot 2} \pmod{39} \\
&\cong (38)^{2 \cdot 2 \cdot 2 \cdot 2 } - (8)^{2 \cdot 2 \cdot 2} \pmod{39} & & \text{[alt.: note that $38 \cong -1 \pmod{39}$]} \\
&\cong (38^2)^{2 \cdot 2 \cdot 2 } - (8^2)^{2 \cdot 2} \pmod{39} \\
&\cong (37 \cdot 39 +1)^{2 \cdot 2 \cdot 2 } - (1 \cdot 39 + 25)^{2 \cdot 2} \pmod{39} \\
&\cong (1)^{2 \cdot 2 \cdot 2 } - (25)^{2 \cdot 2} \pmod{39} \\
&\cong 1 - (25)^{2 \cdot 2} \pmod{39} \\
&\cong 1 - (25^2)^{2} \pmod{39} \\
&\cong 1 - (16 \cdot 39 + 1)^{2} \pmod{39}
&\cong 1 - (1)^{2} \pmod{39} \\
&\cong 0 \pmod{39} \text{,}
\end{align*}
so $39$ divides the gven quantity.