16

Let $0<b<a$ and define $$J(a,b)=\int_0^1\frac{\arctan\sqrt{t^2+a}}{(t^2+b)\sqrt{t^2+a}}dt.\tag1$$

I am seeking a closed form for $J(a,b)$.


I was motivated to find a closed form for $(1)$ after seeing the approach taken in this answer and thinking that it could be generalized.

I have actually succeeded in finding a closed form for the special case $(a,b)=(a,\tfrac{a}{2})$:

$$J(a,\tfrac{a}{2})=\frac{\pi^2}{2a}-\frac{\pi}{a}\arctan\sqrt{a+1}-\frac1a\arctan^2\sqrt{\frac{2}{a}},$$ which comes from the more general result $$J(a,b)+J(a,a-b)=\phi_2(a,b)-\phi_1(b)\phi_1(a-b)+\phi_2(a,a-b),\tag2$$ where $$\phi_1(x)=\int_0^1\frac{dt}{x+t^2}=\int_1^\infty\frac{dt}{1+xt^2}=\frac1{\sqrt x}\arctan\frac1{\sqrt x},$$ and $$\phi_2(a,b)=\frac{\pi}{2\sqrt{b(a-b)}}\arctan\sqrt{\frac{a-b}{b(a+1)}}.$$ I will supply a proof below.


Proof of $(2)$. Let $$f(z)=\int_0^1\frac{\arctan(z\sqrt{t^2+a})}{(t^2+b)\sqrt{t^2+a}}dt,$$ so that $J(a,b)=f(1)$. Then clearly $$J(a,b)=f(1)=\lim_{z\to\infty}f(z)-\int_1^\infty f'(z)dz.$$ Then since $\lim_{z\to\infty}\arctan(xz)=\pi/2$ for $x>0$, we have $$J(a,b)=\frac\pi2\int_0^1\frac{dt}{(t^2+b)\sqrt{t^2+a}}-\int_1^\infty\int_0^1\frac{dt}{(t^2+b)(z^2t^2+az^2+1)}dz.$$ The first integral is relatively simple: $$\begin{align} \int_0^1\frac{dt}{(t^2+b)\sqrt{t^2+a}}&=\int_0^{1/\sqrt{a}}\frac{du}{(au^2+b)\sqrt{u^2+1}}\qquad[t\mapsto u\sqrt{a}]\\ &=\int_0^{\arctan 1/\sqrt{a}}\frac{\sec^2x\,dx}{(a\tan^2x+b)\sqrt{\tan^2x+1}}\qquad[u\mapsto \tan x]\\ &=\int_0^{\arctan 1/\sqrt{a}}\frac{\cos x\,dx}{b+(a-b)\sin^2x}\\ &=\int_0^{1/\sqrt{a+1}}\frac{dt}{b+(a-b)t^2}\qquad [\sin x\mapsto t]\\ &=\left.\frac{1}{\sqrt{b(a-b)}}\arctan\left(t\sqrt{\frac{a-b}{b}}\right)\right|_0^{1/\sqrt{a+1}}\\ &=\frac{1}{\sqrt{b(a-b)}}\arctan\sqrt{\frac{a-b}{b(a+1)}}=\frac2\pi\phi_2(a,b).\tag3 \end{align}$$ The next integral is also manageable: $$\begin{align} \int_1^\infty f'(z)dz&=\int_1^\infty\int_0^1\frac{dt}{(t^2+b)(z^2t^2+az^2+1)}dz\\ &=\int_1^\infty\int_0^1\frac{1}{1+(a-b)z^2}\left(\frac{1}{t^2+b}-\frac{1}{t^2+a+1/z^2}\right)dtdz\\ &=\int_1^\infty\frac{1}{1+(a-b)z^2}\left(\phi_1(b)-\phi_1(a+1/z^2)\right)dz\\ &=\phi_1(b)\phi_1(a-b)-\int_1^\infty \frac{\arctan(1/\sqrt{a+1/z^2})}{(1+(a-b)z^2)\sqrt{a+1/z^2}}dz\\ &=\phi_1(b)\phi_1(a-b)-\int_0^1 \frac{\arctan(1/\sqrt{t^2+a})}{(t^2+(a-b))\sqrt{t^2+a}}dt\qquad [z\mapsto 1/t]\\ &=\phi_1(b)\phi_1(a-b)-\int_0^1 \frac{\tfrac\pi2-\arctan\sqrt{t^2+a}}{(t^2+(a-b))\sqrt{t^2+a}}dt\\ &=\phi_1(b)\phi_1(a-b)-\frac\pi2\int_0^1 \frac{dt}{(t^2+(a-b))\sqrt{t^2+a}}+\int_0^1 \frac{\arctan\sqrt{t^2+a}}{(t^2+(a-b))\sqrt{t^2+a}}dt\\ &=\phi_1(b)\phi_1(a-b)-\phi_2(a,a-b)+J(a,a-b).\tag4 \end{align}$$ Then from $(3)$ and $(4)$, $$J(a,b)=\phi_2(a,b)-\phi_1(b)\phi_1(a-b)+\phi_2(a,a-b)-J(a,a-b),$$ as desired.

Is there some way to find a closed form for $J$?


EDIT:

One may use the series $$g(z)=\frac{\arctan\sqrt z}{\sqrt z}=\sum_{n\ge1}\frac{(-1)^n}{2n-1}\left(\frac{1}{z^n}-\frac{2}{\sqrt z}\right)\qquad z\ge1$$ to get $$J(a,b)=-\phi_2(a,b)+\sum_{n\ge1}\frac{(-1)^n}{2n-1}\int_0^1\frac{dt}{(t^2+b)(t^2+a)^n},$$ where $\phi_2$ is defined above. The integral $\int_0^1\frac{dt}{(t^2+b)(t^2+a)^n}$ is really not nice though.

clathratus
  • 17,161
  • Only to make several points: (1) $J(a,b)$ can be expressed in (quite complicated) dilogarithm. Only certain special $a,b$ yields simple result. (2) $J(4,2)$ is already discussed, proofs there generalize without any difficulty to $J(a,a/2)$. (3) Your $J(a,b)$ is a special case (after substitutions) of $$\int_0^x \frac{\arctan t}{(a-t)\sqrt{b-t}}dt \qquad a>b$$ whose structure is thoroughly investigated in 1930s by Coxeter, you can find its special values here as well as all its linked pages. – pisco Feb 27 '21 at 16:04
  • 2
    In particular, Iridescent's answer there contains a special value of $$J(2,1+ \frac{2}{\sqrt{5}}) = \sqrt{5} \left(\frac{71 \pi ^2}{3600}+\frac{1}{3} \pi \tan ^{-1}\left(\sqrt{\frac{1}{3} \left(9-4 \sqrt{5}\right)}\right)-\frac{1}{6} \pi \tan ^{-1}\left(\sqrt{27-12 \sqrt{5}}\right)\right)$$ As well as similar one for $J(2,1- \frac{2}{\sqrt{5}})$. I am sure you can dig out more special values of $J(a,b)$ using results there. – pisco Feb 27 '21 at 16:07
  • 3
    I am suspicious that there is a known elementary expression for $J(a,b)$. A restrictive two-variable generalization reads $$\int_0^1\frac{\arctan\sqrt{\frac{t^2+a}b}}{(\frac{1+b}at^2+1)\sqrt{\frac{t^2+a}b}}dt\ =\frac{\pi^2}8+\frac12\left(\arctan^2\frac1{\sqrt{a+b}} -\arctan^2\sqrt{\frac{1+b}a} -\arctan^2\sqrt{\frac{1+a}b}\right) $$ which contains $J(a,\frac a2)$ as a special case, i.e. $b=1$. – Quanto Feb 27 '21 at 17:24
  • 2
    @Quanto That's nice. You are invited to post that as solution. – pisco Feb 27 '21 at 18:25
  • 1
    @pisco - thanks. I might if I could find my notes – Quanto Feb 27 '21 at 20:53
  • 1
    Either way, we still get the highly nontrivial result (for $0<b<a$) $$\int_0^1\frac{(2t^2+a)\arctan\sqrt{t^2+a}}{t^4+at^2+b(a-b)}\frac{dt}{\sqrt{t^2+a}}=\phi_1(a,b)-\phi_2(b)\phi_2(a-b)+\phi_1(a,a-b),$$ where $\phi_1(a,b)=\frac{\pi}{2\sqrt{b(a-b)}}\arctan\sqrt{\frac{a-b}{b(a+1)}}$ and $\phi_2(x)=\frac{1}{\sqrt x}\arctan\frac{1}{\sqrt x}$. – clathratus Mar 06 '21 at 18:21

1 Answers1

5

Define the function $\mathcal{I}:\mathbb{R}_{>0}^{2}\rightarrow\mathbb{R}$ via the definite integral

$$\mathcal{I}{\left(p,q\right)}:=\int_{0}^{1}\mathrm{d}t\,\frac{\arctan{\left(\sqrt{t^{2}+p^{2}}\right)}}{\left(t^{2}+q^{2}\right)\sqrt{t^{2}+p^{2}}}.\tag{1}$$

We seek a closed-form expression for $\mathcal{I}{\left(p,q\right)}$ for $\left(p,q\right)\in\mathbb{R}_{>0}^{2}$ such that $p>q$. It should be clear this problem is completely equivalent to the one posed by the OP.


We will make use of the following Euler substitution:

$$\sqrt{t^{2}+p^{2}}=t+x;~~~\small{p>0\land t\in\mathbb{R}\land x\in\mathbb{R}_{>0}}.\tag{2}$$

Solving for $t$, we have

$$t=\frac{p^{2}-x^{2}}{2x},$$

$$\implies\sqrt{t^{2}+p^{2}}=t+x=\frac{p^{2}+x^{2}}{2x},$$

$$\implies dt=dx\,\frac{(-1)\left(p^{2}+x^{2}\right)}{2x^{2}}.$$


Suppose $\left(p,q\right)\in\mathbb{R}_{>0}^{2}\land p>q$. We find

$$\begin{align} \mathcal{I}{\left(p,q\right)} &=\int_{0}^{1}\mathrm{d}t\,\frac{\arctan{\left(\sqrt{t^{2}+p^{2}}\right)}}{\left(t^{2}+q^{2}\right)\sqrt{t^{2}+p^{2}}}\\ &=\int_{0}^{1}\mathrm{d}t\,\frac{\left[\frac{\pi}{2}-\arctan{\left(\frac{1}{\sqrt{t^{2}+p^{2}}}\right)}\right]}{\left(t^{2}+q^{2}\right)\sqrt{t^{2}+p^{2}}}\\ &=\frac{\pi}{2}\int_{0}^{1}\mathrm{d}t\,\frac{1}{\left(t^{2}+q^{2}\right)\sqrt{t^{2}+p^{2}}}-\int_{0}^{1}\mathrm{d}t\,\frac{\arctan{\left(\frac{1}{\sqrt{t^{2}+p^{2}}}\right)}}{\left(t^{2}+q^{2}\right)\sqrt{t^{2}+p^{2}}}\\ &=\frac{\pi}{2}\int_{0}^{\frac{1}{\sqrt{1+p^{2}}}}\mathrm{d}u\,\frac{1}{\left(1-u^{2}\right)}\cdot\frac{1}{\left(\frac{pu}{\sqrt{1-u^{2}}}\right)^{2}+q^{2}};~~~\small{\left[t=\frac{pu}{\sqrt{1-u^{2}}}\right]}\\ &~~~~~-\int_{0}^{1}\mathrm{d}t\,\frac{\arctan{\left(\frac{1}{\sqrt{t^{2}+p^{2}}}\right)}}{\left(t^{2}+q^{2}\right)\sqrt{t^{2}+p^{2}}}\\ &=\frac{\pi}{2}\int_{0}^{\frac{1}{\sqrt{1+p^{2}}}}\mathrm{d}u\,\frac{1}{p^{2}u^{2}+q^{2}\left(1-u^{2}\right)}-\int_{0}^{1}\mathrm{d}t\,\frac{\arctan{\left(\frac{1}{\sqrt{t^{2}+p^{2}}}\right)}}{\left(t^{2}+q^{2}\right)\sqrt{t^{2}+p^{2}}}\\ &=\frac{\pi}{2}\int_{0}^{\frac{1}{\sqrt{1+p^{2}}}}\mathrm{d}u\,\frac{1}{q^{2}+\left(p^{2}-q^{2}\right)u^{2}}-\int_{0}^{1}\mathrm{d}t\,\frac{\arctan{\left(\frac{1}{\sqrt{t^{2}+p^{2}}}\right)}}{\left(t^{2}+q^{2}\right)\sqrt{t^{2}+p^{2}}}\\ &=\frac{\pi}{2}\int_{0}^{\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}}\mathrm{d}v\,\frac{q}{\sqrt{p^{2}-q^{2}}}\cdot\frac{1}{q^{2}+q^{2}v^{2}};~~~\small{\left[u=\frac{qv}{\sqrt{p^{2}-q^{2}}}\right]}\\ &~~~~~-\int_{0}^{1}\mathrm{d}t\,\frac{\arctan{\left(\frac{1}{\sqrt{t^{2}+p^{2}}}\right)}}{\left(t^{2}+q^{2}\right)\sqrt{t^{2}+p^{2}}}\\ &=\frac{\pi}{2}\cdot\frac{1}{q\sqrt{p^{2}-q^{2}}}\int_{0}^{\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}}\mathrm{d}v\,\frac{1}{1+v^{2}}-\int_{0}^{1}\mathrm{d}t\,\frac{\arctan{\left(\frac{1}{\sqrt{t^{2}+p^{2}}}\right)}}{\left(t^{2}+q^{2}\right)\sqrt{t^{2}+p^{2}}}\\ &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}-\int_{0}^{1}\mathrm{d}t\,\frac{\arctan{\left(\frac{1}{\sqrt{t^{2}+p^{2}}}\right)}}{\left(t^{2}+q^{2}\right)\sqrt{t^{2}+p^{2}}}.\tag{3a}\\ \end{align}$$

Then $0<-1+\sqrt{1+p^{2}}<p$, and

$$\begin{align} \mathcal{I}{\left(p,q\right)} &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}-\int_{0}^{1}\mathrm{d}t\,\frac{\arctan{\left(\frac{1}{\sqrt{t^{2}+p^{2}}}\right)}}{\left(t^{2}+q^{2}\right)\sqrt{t^{2}+p^{2}}}\\ &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}\\ &~~~~~-\int_{p}^{-1+\sqrt{1+p^{2}}}\mathrm{d}x\,\frac{(-1)\left(p^{2}+x^{2}\right)}{2x^{2}}\cdot\frac{1}{\left(\frac{p^{2}-x^{2}}{2x}\right)^{2}+q^{2}}\cdot\frac{2x}{p^{2}+x^{2}}\\ &~~~~~\times\arctan{\left(\frac{2x}{p^{2}+x^{2}}\right)};~~~\small{\left[-t+\sqrt{t^{2}+p^{2}}=x\right]}\\ &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}-\int_{-1+\sqrt{1+p^{2}}}^{p}\mathrm{d}x\,\frac{4x\arctan{\left(\frac{2x}{p^{2}+x^{2}}\right)}}{\left(p^{2}-x^{2}\right)^{2}+4q^{2}x^{2}}.\tag{3b}\\ \end{align}$$

It follows from the arctangent addition formula that

$$\arctan{\left(\frac{x}{-1+\sqrt{1+p^{2}}}\right)}-\arctan{\left(\frac{x}{1+\sqrt{1+p^{2}}}\right)}=\arctan{\left(\frac{2x}{p^{2}+x^{2}}\right)};~~~\small{p\in\mathbb{R}_{>0}\land x\in\mathbb{R}}.\tag{4}$$

Set $r:=\frac{p}{1+\sqrt{1+p^{2}}}\land\sigma:=\arcsin{\left(\frac{q}{p}\right)}$. Then, $0<r<1\land0<\sigma<\frac{\pi}{2}\land r^{-1}=\frac{1+\sqrt{1+p^{2}}}{p}=\frac{p}{-1+\sqrt{1+p^{2}}}$, and

$$\begin{align} \mathcal{I}{\left(p,q\right)} &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}-\int_{-1+\sqrt{1+p^{2}}}^{p}\mathrm{d}x\,\frac{4x\arctan{\left(\frac{2x}{p^{2}+x^{2}}\right)}}{\left(p^{2}-x^{2}\right)^{2}+4q^{2}x^{2}}\\ &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}-\int_{-1+\sqrt{1+p^{2}}}^{p}\mathrm{d}x\,\frac{4x}{\left(p^{2}-x^{2}\right)^{2}+4q^{2}x^{2}}\\ &~~~~~\times\left[\arctan{\left(\frac{x}{-1+\sqrt{1+p^{2}}}\right)}-\arctan{\left(\frac{x}{1+\sqrt{1+p^{2}}}\right)}\right]\\ &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}-\int_{\frac{-1+\sqrt{1+p^{2}}}{p}}^{1}\mathrm{d}y\,\frac{4p^{2}y}{\left(p^{2}-p^{2}y^{2}\right)^{2}+4p^{2}q^{2}y^{2}}\\ &~~~~~\times\left[\arctan{\left(\frac{py}{-1+\sqrt{1+p^{2}}}\right)}-\arctan{\left(\frac{py}{1+\sqrt{1+p^{2}}}\right)}\right];~~~\small{\left[x=py\right]}\\ &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}-\frac{1}{p^{2}}\int_{\frac{-1+\sqrt{1+p^{2}}}{p}}^{1}\mathrm{d}y\,\frac{4y}{\left(1-y^{2}\right)^{2}+4\left(\frac{q}{p}\right)^{2}y^{2}}\\ &~~~~~\times\left[\arctan{\left(\frac{py}{-1+\sqrt{1+p^{2}}}\right)}-\arctan{\left(\frac{py}{1+\sqrt{1+p^{2}}}\right)}\right]\\ &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}-\frac{1}{p^{2}}\int_{r}^{1}\mathrm{d}y\,\frac{4y}{\left(1-y^{2}\right)^{2}+4y^{2}\sin^{2}{\left(\sigma\right)}}\\ &~~~~~\times\left[\arctan{\left(\frac{y}{r}\right)}-\arctan{\left(ry\right)}\right]\\ &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}-\frac{1}{p^{2}}\int_{r}^{1}\mathrm{d}y\,\frac{4y\left[\arctan{\left(\frac{y}{r}\right)}-\arctan{\left(ry\right)}\right]}{1-2y^{2}\left[1-2\sin^{2}{\left(\sigma\right)}\right]+y^{4}}\\ &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}-\frac{1}{p^{2}}\int_{r}^{1}\mathrm{d}y\,\frac{4y\left[\arctan{\left(\frac{y}{r}\right)}-\arctan{\left(ry\right)}\right]}{1-2y^{2}\cos{\left(2\sigma\right)}+y^{4}}\\ &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}\\ &~~~~~-\frac{1}{p^{2}}\int_{r}^{1}\mathrm{d}y\,\frac{4y\left[\arctan{\left(\frac{y}{r}\right)}-\arctan{\left(ry\right)}\right]}{\left[1-2y\cos{\left(\sigma\right)}+y^{2}\right]\left[1+2y\cos{\left(\sigma\right)}+y^{2}\right]}\\ &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}\\ &~~~~~-\frac{1}{p^{2}\cos{\left(\sigma\right)}}\int_{r}^{1}\mathrm{d}y\,\frac{4y\cos{\left(\sigma\right)}}{\left[1-2y\cos{\left(\sigma\right)}+y^{2}\right]\left[1+2y\cos{\left(\sigma\right)}+y^{2}\right]}\\ &~~~~~\times\left[\arctan{\left(\frac{y}{r}\right)}-\arctan{\left(ry\right)}\right]\\ &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}\\ &~~~~~-\frac{1}{p^{2}\cos{\left(\sigma\right)}}\int_{r}^{1}\mathrm{d}y\,\left[\frac{1}{1-2y\cos{\left(\sigma\right)}+y^{2}}-\frac{1}{1+2y\cos{\left(\sigma\right)}+y^{2}}\right]\\ &~~~~~\times\left[\arctan{\left(\frac{y}{r}\right)}-\arctan{\left(ry\right)}\right]\\ &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}\\ &~~~~~-\frac{1}{p^{2}\sin{\left(\sigma\right)}\cos{\left(\sigma\right)}}\int_{r}^{1}\mathrm{d}y\,\left[\frac{\sin{\left(\sigma\right)}}{1-2y\cos{\left(\sigma\right)}+y^{2}}-\frac{\sin{\left(\sigma\right)}}{1+2y\cos{\left(\sigma\right)}+y^{2}}\right]\\ &~~~~~\times\left[\arctan{\left(\frac{y}{r}\right)}-\arctan{\left(ry\right)}\right]\\ &=\frac{\pi\arctan{\left(\frac{\sqrt{p^{2}-q^{2}}}{q\sqrt{1+p^{2}}}\right)}}{2q\sqrt{p^{2}-q^{2}}}\\ &~~~~~-\frac{1}{q\sqrt{p^{2}-q^{2}}}\int_{r}^{1}\mathrm{d}y\,\left[\frac{\sin{\left(\sigma\right)}}{1-2y\cos{\left(\sigma\right)}+y^{2}}-\frac{\sin{\left(\sigma\right)}}{1+2y\cos{\left(\sigma\right)}+y^{2}}\right]\\ &~~~~~\times\left[\arctan{\left(\frac{y}{r}\right)}-\arctan{\left(ry\right)}\right].\tag{5}\\ \end{align}$$

As such, let's introduce another auxiliary function $\mathcal{J}:\left(0,1\right)\times\left(0,\frac{\pi}{2}\right)\rightarrow\mathbb{R}$ defined via the last definite integral above:

$$\mathcal{J}{\left(r,\sigma\right)}:=\int_{r}^{1}\mathrm{d}y\,\left[\frac{\sin{\left(\sigma\right)}}{1-2y\cos{\left(\sigma\right)}+y^{2}}-\frac{\sin{\left(\sigma\right)}}{1+2y\cos{\left(\sigma\right)}+y^{2}}\right]\left[\arctan{\left(\frac{y}{r}\right)}-\arctan{\left(ry\right)}\right].\tag{6}$$


Given $\left(r,\sigma\right)\in\left(0,1\right)\times\left(0,\frac{\pi}{2}\right)$, we find

$$\begin{align} \mathcal{J}{\left(r,\sigma\right)} &=\int_{r}^{1}\mathrm{d}y\,\left[\frac{\sin{\left(\sigma\right)}}{1-2y\cos{\left(\sigma\right)}+y^{2}}-\frac{\sin{\left(\sigma\right)}}{1+2y\cos{\left(\sigma\right)}+y^{2}}\right]\\ &~~~~~\times\left[\arctan{\left(\frac{y}{r}\right)}-\arctan{\left(ry\right)}\right]\\ &=\int_{r}^{1}\mathrm{d}y\,\left[\frac{\sin{\left(\sigma\right)}}{1-2y\cos{\left(\sigma\right)}+y^{2}}-\frac{\sin{\left(\sigma\right)}}{1+2y\cos{\left(\sigma\right)}+y^{2}}\right]\arctan{\left(\frac{y}{r}\right)}\\ &~~~~~-\int_{r}^{1}\mathrm{d}y\,\left[\frac{\sin{\left(\sigma\right)}}{1-2y\cos{\left(\sigma\right)}+y^{2}}-\frac{\sin{\left(\sigma\right)}}{1+2y\cos{\left(\sigma\right)}+y^{2}}\right]\arctan{\left(ry\right)}\\ &=\int_{1}^{\frac{1}{r}}\mathrm{d}t\,\left[\frac{r\sin{\left(\sigma\right)}}{1-2rt\cos{\left(\sigma\right)}+r^{2}t^{2}}-\frac{r\sin{\left(\sigma\right)}}{1+2rt\cos{\left(\sigma\right)}+r^{2}t^{2}}\right]\arctan{\left(t\right)};~~~\small{\left[y=rt\right]}\\ &~~~~~-\int_{r^{2}}^{r}\mathrm{d}u\,\left[\frac{r\sin{\left(\sigma\right)}}{r^{2}-2ru\cos{\left(\sigma\right)}+u^{2}}-\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\right]\arctan{\left(u\right)};~~~\small{\left[y=\frac{u}{r}\right]}\\ &=\int_{r}^{1}\mathrm{d}u\,\left[\frac{r\sin{\left(\sigma\right)}}{r^{2}-2ru\cos{\left(\sigma\right)}+u^{2}}-\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\right]\\ &~~~~~\times\arctan{\left(\frac{1}{u}\right)};~~~\small{\left[t=u^{-1}\right]}\\ &~~~~~-\int_{r^{2}}^{r}\mathrm{d}u\,\left[\frac{r\sin{\left(\sigma\right)}}{r^{2}-2ru\cos{\left(\sigma\right)}+u^{2}}-\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\right]\arctan{\left(u\right)}\\ &=\int_{r}^{1}\mathrm{d}u\,\left[\frac{r\sin{\left(\sigma\right)}}{r^{2}-2ru\cos{\left(\sigma\right)}+u^{2}}-\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\right]\left[\frac{\pi}{2}-\arctan{\left(u\right)}\right]\\ &~~~~~-\int_{r^{2}}^{r}\mathrm{d}u\,\left[\frac{r\sin{\left(\sigma\right)}}{r^{2}-2ru\cos{\left(\sigma\right)}+u^{2}}-\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\right]\arctan{\left(u\right)}\\ &=\frac{\pi}{2}\int_{r}^{1}\mathrm{d}u\,\left[\frac{r\sin{\left(\sigma\right)}}{r^{2}-2ru\cos{\left(\sigma\right)}+u^{2}}-\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\right]\\ &~~~~~-\int_{r}^{1}\mathrm{d}u\,\left[\frac{r\sin{\left(\sigma\right)}}{r^{2}-2ru\cos{\left(\sigma\right)}+u^{2}}-\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\right]\arctan{\left(u\right)}\\ &~~~~~-\int_{r^{2}}^{r}\mathrm{d}u\,\left[\frac{r\sin{\left(\sigma\right)}}{r^{2}-2ru\cos{\left(\sigma\right)}+u^{2}}-\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\right]\arctan{\left(u\right)}\\ &=\frac{\pi}{2}\int_{r}^{1}\mathrm{d}u\,\frac{d}{du}\left[\arctan{\left(\frac{u-r\cos{\left(\sigma\right)}}{r\sin{\left(\sigma\right)}}\right)}-\arctan{\left(\frac{u+r\cos{\left(\sigma\right)}}{r\sin{\left(\sigma\right)}}\right)}\right]\\ &~~~~~-\int_{r^{2}}^{1}\mathrm{d}u\,\left[\frac{r\sin{\left(\sigma\right)}}{r^{2}-2ru\cos{\left(\sigma\right)}+u^{2}}-\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\right]\arctan{\left(u\right)}\\ &=\frac{\pi}{2}\bigg{[}\arctan{\left(\frac{1-r\cos{\left(\sigma\right)}}{r\sin{\left(\sigma\right)}}\right)}-\arctan{\left(\frac{1+r\cos{\left(\sigma\right)}}{r\sin{\left(\sigma\right)}}\right)}\\ &~~~~~-\arctan{\left(\frac{1-\cos{\left(\sigma\right)}}{\sin{\left(\sigma\right)}}\right)}+\arctan{\left(\frac{1+\cos{\left(\sigma\right)}}{\sin{\left(\sigma\right)}}\right)}\bigg{]}\\ &~~~~~+\int_{r^{2}}^{1}\mathrm{d}u\,\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\arctan{\left(u\right)}\\ &~~~~~-\int_{r^{2}}^{1}\mathrm{d}u\,\frac{r\sin{\left(\sigma\right)}}{r^{2}-2ru\cos{\left(\sigma\right)}+u^{2}}\arctan{\left(u\right)}\\ &=\frac{\pi}{2}\left[\frac{\pi}{2}-\sigma-\arctan{\left(\frac{r^{2}\sin{\left(2\sigma\right)}}{1-r^{2}\cos{\left(2\sigma\right)}}\right)}\right]\\ &~~~~~+\int_{r^{2}}^{1}\mathrm{d}u\,\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\arctan{\left(u\right)}\\ &~~~~~+\int_{-1}^{-r^{2}}\mathrm{d}u\,\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\arctan{\left(u\right)};~~~\small{\left[u\mapsto-u\right]}\\ &=\frac{\pi}{2}\left[\frac{\pi}{2}-\sigma-\arctan{\left(\frac{r^{2}\sin{\left(2\sigma\right)}}{1-r^{2}\cos{\left(2\sigma\right)}}\right)}\right]\\ &~~~~~+\int_{-1}^{1}\mathrm{d}u\,\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\arctan{\left(u\right)}\\ &~~~~~-\int_{-r^{2}}^{r^{2}}\mathrm{d}u\,\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\arctan{\left(u\right)}.\tag{7}\\ \end{align}$$

To facilitate the evaluation of the remaining two integrals in the last line above, we introduce yet another auxiliary function $\mathcal{K}:\left(0,1\right)\times\left(0,\frac{\pi}{2}\right)\times\left(0,1\right]\rightarrow\mathbb{R}$ defined via the definite integral

$$\mathcal{K}{\left(r,\sigma,z\right)}:=\int_{-z}^{z}\mathrm{d}u\,\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\arctan{\left(u\right)}.\tag{8}$$


Suppose $\left(r,\sigma,z\right)\in\left(0,1\right)\times\left(0,\frac{\pi}{2}\right)\times\left(0,1\right]$. We then have

$$\begin{align} \mathcal{K}{\left(r,\sigma,z\right)} &=\int_{-z}^{z}\mathrm{d}u\,\frac{r\sin{\left(\sigma\right)}}{r^{2}+2ru\cos{\left(\sigma\right)}+u^{2}}\arctan{\left(u\right)}\\ &=\int_{-z}^{z}\mathrm{d}u\,\arctan{\left(u\right)}\frac{d}{du}\arctan{\left(\frac{u+r\cos{\left(\sigma\right)}}{r\sin{\left(\sigma\right)}}\right)}\\ &=\arctan{\left(z\right)}\arctan{\left(\frac{z+r\cos{\left(\sigma\right)}}{r\sin{\left(\sigma\right)}}\right)}-\arctan{\left(-z\right)}\arctan{\left(\frac{-z+r\cos{\left(\sigma\right)}}{r\sin{\left(\sigma\right)}}\right)}\\ &~~~~~-\int_{-z}^{z}\mathrm{d}u\,\arctan{\left(\frac{u+r\cos{\left(\sigma\right)}}{r\sin{\left(\sigma\right)}}\right)}\frac{d}{du}\arctan{\left(u\right)};~~~\small{I.B.P.}\\ &=\arctan{\left(z\right)}\arctan{\left(\frac{z+r\cos{\left(\sigma\right)}}{r\sin{\left(\sigma\right)}}\right)}-\arctan{\left(z\right)}\arctan{\left(\frac{z-r\cos{\left(\sigma\right)}}{r\sin{\left(\sigma\right)}}\right)}\\ &~~~~~-\int_{-z}^{z}\mathrm{d}u\,\frac{1}{1+u^{2}}\arctan{\left(\frac{r\cos{\left(\sigma\right)}+u}{r\sin{\left(\sigma\right)}}\right)}\\ &=\arctan{\left(z\right)}\left[\arctan{\left(\frac{z+r\cos{\left(\sigma\right)}}{r\sin{\left(\sigma\right)}}\right)}-\arctan{\left(\frac{z-r\cos{\left(\sigma\right)}}{r\sin{\left(\sigma\right)}}\right)}\right]\\ &~~~~~-\int_{-z}^{z}\mathrm{d}u\,\frac{1}{1+u^{2}}\arctan{\left(\cot{\left(\sigma\right)}+r^{-1}u\csc{\left(\sigma\right)}\right)}\\ &=\arctan{\left(z\right)}\left[\arctan{\left(\frac{z+r\cos{\left(\sigma\right)}}{r\sin{\left(\sigma\right)}}\right)}-\arctan{\left(\frac{z-r\cos{\left(\sigma\right)}}{r\sin{\left(\sigma\right)}}\right)}\right]\\ &~~~~~-\int_{-\arctan{\left(z\right)}}^{\arctan{\left(z\right)}}\mathrm{d}\varphi\,\arctan{\left(\cot{\left(\sigma\right)}+r^{-1}\csc{\left(\sigma\right)}\tan{\left(\varphi\right)}\right)};~~~\small{\left[\arctan{\left(u\right)}=\varphi\right]}.\tag{9}\\ \end{align}$$


Suppose $\left(a,b,\psi,\omega\right)\in\mathbb{R}\times\mathbb{R}\times\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\times\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$, and assume

$$0<a\land\sqrt{1+a^{2}}<b\land-\frac{\pi}{4}\le\psi<\omega\le\frac{\pi}{4}.$$

Set

$$B:=\frac{\left[\sqrt{a^{2}+\left(b+1\right)^{2}}+\sqrt{a^{2}+\left(b-1\right)^{2}}\right]^{2}}{4b}\land\phi:=\frac12\arctan{\left(\frac{2ab}{b^{2}-a^{2}-1}\right)},$$

and note that $1<B\land0<\phi<\frac{\pi}{4}$. Then, it can be shown that

$$\begin{align} \int_{\psi}^{\omega}\mathrm{d}\varphi\,\arctan{\left(a+b\tan{\left(\varphi\right)}\right)} &=\frac12\left(\phi+\omega\right)^{2}-\frac12\left(\phi+\psi\right)^{2}\\ &~~~~~-\left(\omega-\psi\right)\arctan{\left(\frac{\tan{\left(\phi\right)}}{B}\right)}\\ &~~~~~-\frac12\operatorname{Li}_{2}{\left(\frac{1-B}{1+B},\pi-2\phi-2\omega\right)}\\ &~~~~~+\frac12\operatorname{Li}_{2}{\left(\frac{1-B}{1+B},\pi-2\phi-2\psi\right)}.\tag{10}\\ \end{align}$$

The integration formula above is derived in this question.

Integration formula $(10)$ is sufficient to provide us with a closed-form expression for $\mathcal{K}$, and in turn $\mathcal{J}$ and $\mathcal{I}$ as well. So our work is complete in principle, and all that remains is to substitute back the chain of results to obtain a final expression in terms of the original variables. (Forgive me if I don't bother to do that here since the end result is such a cumbersome expression.)


David H
  • 29,921
  • Truly incredible work! How long did this take you and how did you come up with a solution? – clathratus Jan 08 '22 at 06:33
  • 2
    @clathratus I've been thinking about it off and on for weeks. I knew from the beginning the first step would be the Euler substitution, but then I was stumped for a while until it occurred to me how to decompose the arctangent with the addition formula. After that key insight, I knew from experience there would be formulas in the appendices of Lewin's "Polylogarithms and Associated Functions" to reduce all the integrals to dilogarithms. I'm glad you appreciated my effort because it was truly harrowing. :) – David H Jan 08 '22 at 06:53