1

Calculate $$\lim_{n \to \infty}\frac{a^n}{n!}$$

Attempt

Consider $$\lim_{n \to \infty}\exp(\log(\frac{a^n}{n!}))=\exp\left(\lim_{n \to \infty}\left(n\log(a)-\sum_{n\geq 1}\log(n)\right)\right)$$

for $a>1$ $$ \lim_{n \to \infty}\left(n\log(a)\right)=\infty $$ $$ \sum_{n \geq 1}\log(n)\leq \int_{1}^{\infty}{\log(x)dx}=\infty$$

therefore $$\exp\left(\lim_{n \to \infty}\left(n\log(a)-\sum_{n\geq 1}\log(n)\right)\right)=\exp(-\infty)=0$$ therefore

$$\lim_{n \to \infty}\frac{a^n}{n!}=0$$ Is my proof right?

I think that is not general, since $a>1$ and in the problem $a$ is arbitrary

Juan T
  • 347

3 Answers3

3

Replying to your last comment: Yes there is a faster way. Show that for sufficiently large $n$ the following inequality holds: $$n!>(a+1)^n.$$ We now have $$\lim_{n\to\infty} \frac{a^n}{n!} \leq \lim_{n\to\infty} \frac{a^n}{(a+1)^n} = \lim_{n\to\infty} \left(\frac{a}{a+1}\right)^n \to 0.$$

vitamin d
  • 5,783
1

Here is an alternative:

It seems you are working with $a>1$, although it is not stated at the beginning but rather in the middle. I will go with that assumption:

$a^n>0$ and $n! > 0, \forall n \in \mathbb{N}$.

Now,

$\displaystyle \frac{a^n}{n!} = \frac{a\cdot a \cdots a}{1\cdot 2 \cdots n} $

At some point we will have $n > a$, say this occurs at $N$, take $n > N$ then

$\displaystyle \frac{a^n}{n!} = \frac{a\cdot a \cdots a}{1\cdot 2 \cdots n} \le \frac{a \cdots a}{1 \cdots (N-1)}\cdot \frac{a \cdots a}{N \cdots n} \le \frac{a^{N-1}}{(N-1)!}\cdot \frac{a^{n-(N-1)}}{N\cdots n}$

Now, since we have $m > a, \forall m \in \{N,\ldots,n\}$ we know $\displaystyle \frac{a}{m} < 1$

Hence

$\displaystyle \frac{a^{N-1}}{(N-1)!}\cdot \frac{a^{n-(N-1)}}{N\cdots n} \le \frac{a^{N-1}}{(N-1)!}\cdot \frac{a}{n} \to 0$ as $n \to \infty$

oliverjones
  • 4,199
0

Hint : Starting from your idea, try to find the limit of $n log(a) - \sum_{k=1}^n log(k)$. Then apply what you know about the $exp$ function.

FiMePr
  • 1,219