Calculate $$\lim_{n \to \infty}\frac{a^n}{n!}$$
Attempt
Consider $$\lim_{n \to \infty}\exp(\log(\frac{a^n}{n!}))=\exp\left(\lim_{n \to \infty}\left(n\log(a)-\sum_{n\geq 1}\log(n)\right)\right)$$
for $a>1$ $$ \lim_{n \to \infty}\left(n\log(a)\right)=\infty $$ $$ \sum_{n \geq 1}\log(n)\leq \int_{1}^{\infty}{\log(x)dx}=\infty$$
therefore $$\exp\left(\lim_{n \to \infty}\left(n\log(a)-\sum_{n\geq 1}\log(n)\right)\right)=\exp(-\infty)=0$$ therefore
$$\lim_{n \to \infty}\frac{a^n}{n!}=0$$ Is my proof right?
I think that is not general, since $a>1$ and in the problem $a$ is arbitrary