Let $D$ denote a Frechet derivative at a point $a$. Then for $f:\mathbb{R}\to\mathbb{R}$ it holds for all $x$ from some neighborhood of $a$: $$|f(x)-(f(a)+D(x-a))|\leq|f(x)-(f(a)+M(x-a))|,\ M\neq D$$ Circular definition of tangent line and derivative
Prove that $T(x)$ is the most accurate linear approximation to $f(x)$ near $x_0$...
Do we have this for Frechet derivative in other normed spaces $f:\mathbb{S}\to\mathbb{P}$ also?
I can only get that for some $\delta$ and all $x$ s.t. $||x-a||_S\leq \delta$ $$||f(x)-(f(a)+D(x-a))||_{P}\leq\frac{1}{3}||D-M||||x-a||_S$$ $$\operatorname{sup}_{||x-a||_S\leq\delta}||f(x)-(f(a)+D(x-a))||_{P}\leq\frac{1}{3}\delta||D-M||$$ $$\delta||D-M||=\operatorname{sup}_{||x-a||_S\leq\delta}||(D-M)(x-a)||_P\leq\frac{1}{3}\delta||D-M||+$$ $$+\operatorname{sup}_{||x-a||_S\leq\delta}||f(x)-(f(a)+M(x-a))||_{P}$$ So it follows $$\operatorname{sup}_{||x-a||_S\leq\delta}||f(x)-(f(a)+D(x-a))||_{P}<\operatorname{sup}_{||x-a||_S\leq\delta}||f(x)-(f(a)+M(x-a))||_{P}$$ But this is a weaker result of course.
Upd: changed the result to strict inequality.