Given any entourage $E$, let $\:U=E\:$,$\:$ and let $V$ be as in part 4 of
wikipedia's definition of uniform space, and let $\;\; D \: = \: V^{-1} \cap V \;\;\;$.
$D \;\; = \;\; V^{-1} \cap V \;\; \subseteq \;\; V^{-1} \;\;\;\;$ and $\;\;\;\; D \;\; = \;\; V^{-1} \cap V \;\; \subseteq \;\; V \;\;\;\;$ and $\;\;\;\;$ $D$ is an entourage
Let $\:x_1,...,x_n\:$ be such that $\;\; D[x_1\hspace{-0.03 in}]\cup...\cup D[x_n\hspace{-0.03 in}] \: = \: X \;\;\;$.
For all elements $i$ of $\:\{\hspace{-0.02 in}1,\hspace{-0.02 in}2,\hspace{-0.02 in}3,...,n\}\:$,$\:$ for all elements $\:\langle \hspace{.03 in}y,\hspace{-0.02 in}z\rangle\:$ of $X^{\hspace{.02 in}2}$,
$\langle \hspace{.03 in}y,\hspace{-0.02 in}z\rangle \: \in \: \left(D[\hspace{.02 in}x_i]\right)^2 \;\;\;\; \implies \;\;\;\; \langle \hspace{.02 in}x_i,y\rangle \: \in \: D \: \subseteq \: V^{-1} \;\; \text{ and } \;\; \langle \hspace{.02 in}x_i,z\rangle \: \in \: D \: \subseteq \: V$
$\implies \;\;\;\; \langle \hspace{.03 in}y,x_i\rangle \: \in \: V \;\; \text{ and } \;\; \langle \hspace{.02 in}x_i,z\rangle \: \in \: V \;\;\;\; \implies \;\;\;\; \langle \hspace{.03 in}y,z\rangle \: \in \: U \: = \: E$
.
For all elements $i$ of $\:\{\hspace{-0.02 in}1,\hspace{-0.02 in}2,\hspace{-0.02 in}3,...,n\}\:$,$\:$ $\: \left(D[\hspace{.02 in}x_i]\right)^2 \subseteq E \:\:$.
$D[x_1\hspace{-0.03 in}]\hspace{.02 in},...,D[x_n\hspace{-0.03 in}]\:$ satisfies wikipedia's definition.
Since that works for any entourage $E$, Wikipedia's definition follows from his definition.
Therefore Wikipedia's definition is a consequence of Minimus Heximus's definition.