I thought that it might be instructive to present a way forward that uses a regularization of the Dirac Delta. To that end we proceed.
PRELIMINARIES:
Let $\displaystyle \delta_n(x)=\frac1{2\pi}\int_{-n}^ne^{ikx}\,dk$. Then, we can write
$$\delta_n(x)=\begin{cases}\frac{\sin(nx)}{\pi x}&,x\ne0\\\\\frac n\pi&,x=0\tag1\end{cases}$$
The function $\delta_n(x)$ has the following properties:
- For each $n$, $\delta_n(x)$ is an analytic function of $x$.
- $\lim_{n\to \infty} \delta_n(0)= \infty$
- $\left|\int_{-\infty}^x \delta_n(x')\,dx'\right|$ is uniformly bounded.
- $\lim_{n\to \infty}\int_{-\infty}^{x}\delta_n(x')\,dx'=u(x)$, where $u$
is the unit step funciton.
- For each $n>0$, $\int_{-\infty}^\infty \delta_n(x)\,dx=1$
While heuristically $\delta_n(x)$ "approximates" a Dirac Delta when $n$ is "large," the limit of $\delta_n(x)$ fails to exist. However, if we interpret this limit in the distributional sense, then $\lim_{n\to\infty}\delta_n(x)\sim\delta(x)$. We will now show that this is indeed that case.
ANALYSIS:
Let $\phi(x)\in S$ where $S$ is the Schwarz Space of functions.
We will now evaluate the limit
$$\begin{align}
\lim_{n\to \infty}\int_{-\infty}^\infty \delta_n(x)\phi(x)\,dx=\lim_{n\to \infty}\int_{-\infty}^\infty \frac{\sin(nx)}{\pi x}\phi(x)\,dx\tag1
\end{align}$$
Integrating by parts the integral on the right-hand side of $(1)$ with $u=\phi(x)$ and $v=\int_{-\infty}^{nx}\frac{\sin(x')}{\pi x'}\,dx'$ reveals
$$\begin{align}
\lim_{n\to \infty}\int_{-\infty}^\infty \delta_n(x)\phi(x)\,dx&=-\lim_{n\to \infty}\int_{-\infty}^\infty \phi'(x)\int_{-\infty}^{nx}\frac{\sin(x')}{\pi x'}\,dx'\,dx\tag2
\end{align}$$
Using Property 3 in the Preliminaries section, there exists a number $C$ such that $\left|\phi'(x)\int_{-\infty}^{nx}\frac{\sin(x')}{x'}\,dx'\right|\le C\,|\phi'(x)|$. Inasmuch as $C|\phi'(x)|$ is integrable, the Dominated Convergence Theorem guarantees that
$$\begin{align}
\lim_{n\to \infty}\int_{-\infty}^\infty \delta_n(x)\phi(x)\,dx&=-\lim_{n\to \infty}\int_{-\infty}^\infty \phi'(x)\int_{-\infty}^{nx}\frac{\sin(x')}{\pi x'}\,dx'\,dk\tag3\\\\
&=-\int_{-\infty}^\infty \phi'(x)\lim_{n\to \infty}\left(\int_{-\infty}^{nx}\frac{\sin(x')}{\pi x'}\,dx'\right)\,dx\\\\
&=- \int_{-\infty}^\infty \phi'(x)\underbrace{u(x)}_{\text{Unit Step}}\,dx\\\\
&=-\int_0^\infty \phi'(x)\,dx\\\\
&=\phi(0)
\end{align}$$
Therefore, in the sense of distributions as given by $(3)$, we assert that $\lim_{n\to\infty}\delta_n(x)\sim \delta(x)$ as was to be shown!