Proof:
Let
$$
I=\int_0^1\frac{x^2 \log(1-x^4)}{1+x^4}\,\mathrm dx.
$$
Expanding the factor of $(1+x^4)^{-1}$ and integrating termwise yields
$$
I=-\frac{1}{4}\sum_{k=0}^\infty \frac{H_{k+3/4}}{k+3/4}(-1)^k.
$$
Working with the properties of the Pochhammer symbol we may write
$$
I=\frac{1}{3}\partial_c F\left({1,3/4 \atop c};-1\right)\bigg|_{c=7/4}-\frac{H_{3/4}}{3} F\left({1,3/4 \atop 7/4};-1\right).
$$
We need to find an explicit expression for the remaining derivative. Using this relationship we have
$$
F\left({1,3/4 \atop c};-1\right)=2^{-3/4}(c-1)\left(-\frac{1}{2}\right)^{1-c}\operatorname{B}_{-1}(c-1,7/4-c),
$$
where $\operatorname{B}_z(a,b)$ is the incomplete beta function. It follows that
$$
\partial_c F\left({1,3/4 \atop c};-1\right)\bigg|_{c=7/4}%
=\frac{1}{4}(-1)^{3/4} (3\pi+\mathrm i(4+\log 8))\operatorname{B}_{-1}(3/4,0)
-\frac{3}{4}(-1)^{1/4}\partial_c\operatorname{B}_{-1}(c-1,7/4-c)|_{c=7/4},
$$
where
$$
\partial_c\operatorname{B}_{-1}(c-1,7/4-c)|_{c=7/4}=\partial_a\operatorname{B}_{-1}(a,b)|_{a=3/4, b=0}-\partial_b\operatorname{B}_{-1}(a,b)|_{a=3/4, b=0}.
$$
We can evaluate the remaining derivatives using the derivatives of $\operatorname{B}_z(a,b)$ w.r.t. $a$ and $b$ here. We have for the first term
$$
\partial_a\operatorname{B}_{-1}(a,b)|_{a=3/4, b=0}=
\frac{1}{4} (-1)^{3/4} \left(\psi ^{(1)}\left(\frac{7}{8}\right)-\psi
^{(1)}\left(\frac{3}{8}\right)\right)+i \pi B_{-1}\left(\frac{3}{4},0\right).
$$
The second term is more complicated as it has poles of the form $b^{-2}$ as $b\to 0$. The derivatives gives
$$
\partial_b\operatorname{B}_{-1}(a,b)|_{a=3/4, b=0}=\lim_{b\to 0}\left(
\frac{2^b}{b^2}{_3F_2}\left({\frac{1}{4},b,b\atop b+1,b+1};2\right)+\left(\psi ^{(0)}(b)-\psi^{(0)}\left(b+\frac{3}{4}\right)\right) \operatorname B\left(\frac{3}{4},b\right)-\log (2)\operatorname{B}_2\left(b,\frac{3}{4}\right)\right).
$$
We make the following observations as $b\to 0$:
$$
\left(\psi ^{(0)}(b)-\psi ^{(0)}\left(b+\frac{3}{4}\right)\right)
B\left(\frac{3}{4},b\right)\sim -\frac{1}{b^2}+4 C-\frac{7 \pi ^2}{24}+\frac{\log ^2(8)}{2}-\frac{1}{2} \pi \log (8)+\mathcal O(b),
$$
and
$$
\frac{2^b}{b^2}{_3F_2}\left({1/4,b,b\atop b+1,b+1};2\right)\sim \frac{1}{b^2}+\frac{\log 2}{b}+\frac{1}{2}\log^2 2+\frac{1}{2}{_4F_3}\left({1,1,1,5/4\atop 2,2,2};2\right)+\mathcal O(b),
$$
and
$$
\log (2)\operatorname{B}_2\left(b,\frac{3}{4}\right)\sim\frac{\log 2}{b}+\log^22+\frac{\log 2}{2}{_3F_2}\left({1,1,5/4\atop 2,2};2\right)+\mathcal O(b).
$$
These three results then give us
$$
\partial_b\operatorname{B}_{-1}(a,b)|_{a=3/4, b=0}=
4\log^22-\frac{3}{2}\pi\log 2+4 C-\frac{7 \pi ^2}{24}
+\frac{1}{2}{_4F_3}\left({1,1,1,5/4\atop 2,2,2};2\right)
-\frac{\log 2}{2}{_3F_2}\left({1,1,5/4\atop 2,2};2\right).
$$
Bringing all results together gives a final expression for $I$.
Edit:
Much of the special functions in this solution reduce to elementary functions by way of the differentiation formula
\begin{align}\left(z\frac{d}{dz}+\beta_k-1\right){}_pF_q\biggl[
\begin{array}{c}\alpha_1,\ldots,\alpha_p \\
\beta_1,\ldots,\beta_k,\ldots,\beta_q\end{array};z\biggr]&=\\
=\left(\beta_k-1\right)
{}_pF_q\biggl[
\begin{array}{c}\alpha_1,\ldots,\alpha_p \\
\beta_1,\ldots,\beta_k-1,\ldots,\beta_q\end{array};z\biggr]&.
\tag{$\spadesuit$}\end{align}
For example, this formula gives
$$
(z\partial_z+1){_3F_2}\left({1,1,5/4\atop 2,2};z\right)={F}\left({1,5/4\atop 2};z\right)=\frac{4}{z}((1-z)^{-1/4}-1).
$$
Letting $y(z)={_3F_2}(1,1,5/4; 2,2;z)$ the above formula is written as
$$
z y^\prime+y=\frac{4}{z}((1-z)^{-1/4}-1),\quad y(0)=1.
$$
Solving the differential equation we find
$$
y(z)=\frac{2}{z}\left((-2-2 i) \log \left(-\sqrt[4]{1-z}+i\right)-(2-2 i) \log \left(\sqrt[4]{1-z}+i\right)-4 \log
\left(\sqrt[4]{1-z}+1\right)-(1-2 i) \pi +\log (64)\right).
$$
Substituting $z=2$ and simplifying then gives the result
$$
{_3F_2}\left({1,1,5/4\atop 2,2};2\right)=-\mathrm i\pi+4\log 2+(1-i) \log (3-2 \sqrt{2}).
$$
I suspect my solution for $I$ here can be reduced down to to elementary functions without the need to beta and hypergeometric functions.
Integrate[x^2*Log[1-x^4]/(1+x^4),{x,0,1}]
. Its execution in 12.2 on demand through Dropbox. – user64494 Feb 25 '21 at 15:40NIntegrate[x^2*Log[1 - x^4]/(1 + x^4), {x, 0, 1}]
performs-0.162858
. The same does Maple. Sorry, my bad. – user64494 Feb 26 '21 at 07:50