here's my attempt to solve your problem without using L'Hospital rule :
Reminder :
$$\lim_{x\to0}\frac{\sin(ax)}{x}=a$$
From this post here you can see that :
$$\lim_{x\to 0} \frac{\ln(x+1)-x}{x^2}=-\frac{1}{2}$$
We'll need these properties, so let's start :
Let our limit be $\Lambda$
\begin{align}
\Lambda&=\lim_{x\to 0}\frac{x-\ln(x+1)}{x\sin(2x)}\\
&=\lim_{x\to 0} \frac{1}{\sin(2x)}\times \frac{x-\ln(x+1)}{x}\\
&=\lim_{x\to 0}\frac{x}{\sin(2x)}\times \frac{x-\ln(x+1)}{x^2}\\
&=\lim_{x\to 0}\frac{1}{\frac{\sin(2x)}{x}}\times \frac{x-\ln(x+1)}{x^2}\\
&=\frac{1}{2}\lim_{x\to 0} -\frac{\ln(x+1)-x}{x^2}\\
&=\frac{1}{2}\times \left((-1)\times \left(-\frac{1}{2}\right)\right)\\
&=\frac{1}{4}
\end{align}
Hence your limit
$$\Lambda=\lim_{x\to 0}\frac{x-\ln(x+1)}{x\sin(2x)}=\frac{1}{4}$$