When we write a cross-product as a determinant, we are really abusing notation. If you look at the expression,
\begin{align}
\mathbf{a\times b}
&= \begin{vmatrix}
\mathbf{i}&\mathbf{j}&\mathbf{k}\\
a_1&a_2&a_3\\
b_1&b_2&b_3\\
\end{vmatrix}
\\
&=
(a_2b_3 - a_3b_2)\mathbf{i} -(a_1b_3 - a_3b_1)\mathbf{j} +(a_1b_2 - a_2b_1)\mathbf{k}
\\
&=\begin{pmatrix}a_2b_3-a_3b_2\\a_3b_1-a_1b_3\\a_1b_2-a_2b_1\end{pmatrix},
\end{align}
you can see that in each term we have a product of two dimensionful `length' coordinates, giving an interpretation as area.
When we talk about it being numerically the area of a parallogram, we are talking about the norm of this vector,
\begin{align}
\left\lVert
\mathbf{a\times b}
\right\rVert
&=
\sqrt{(a_2b_3 - a_3b_2)^2 + (a_1b_3 - a_3b_1)^2 + (a_1b_2 - a_2b_1)^2}.
\end{align}
Counting the dimensions is easiest if we just consider
\begin{align}
&\mathbf{a} = \begin{pmatrix} a_1 \\ 0 \\ 0\end{pmatrix}
&\mathbf{b} = \begin{pmatrix} 0 \\ b_2 \\ 0\end{pmatrix},
\end{align}
then
\begin{align}
\left\lVert
\mathbf{a\times b}
\right\rVert
&=
\sqrt{(a_1b_2)^2}
\\
&=
a_1 b_2,
\end{align}
ie an area.
Why do we understand a determinant as corresponding to volume? Consider instead the scalar triple product,
\begin{align}
\left(\mathbf{a\times b}\right) \cdot \mathbf{c}
&=
\left( a_2b_3-a_3b_2 \right) c_1 +
\left( a_3b_1-a_1b_3 \right) c_2 +
\left( a_1b_2-a_2b_1 \right) c_3
\\
&=
\begin{vmatrix}
c_1&c_2&c_3\\
a_1&a_2&a_3\\
b_1&b_2&b_3\\
\end{vmatrix}.
\end{align}
Then if we count the dimensions, eg by choosing
\begin{align}
&\mathbf{a} = \begin{pmatrix} a_1 \\ 0 \\ 0\end{pmatrix}
&\mathbf{b} &= \begin{pmatrix} 0 \\ b_2 \\ 0\end{pmatrix}
&\mathbf{c} = \begin{pmatrix} 0 \\ 0 \\ c_3\end{pmatrix},
\end{align}
to simplify the algebra,
we get
$$
\left(\mathbf{a\times b}\right) \cdot \mathbf{c}
=
a_1 b_2 c_3,
$$
a product of three lengths and hence a volume.
Final comment. Why do we abuse notation to write a cross-product as a determinant?
Really, we are interested in the only totally-antisymmetric tensor in three dimensions, called the Levi-Civita, or alternating, symbol $\varepsilon_{ijk}$, defined as
$$
\varepsilon_{ijk} =
\begin{cases}
+1 & \text{if } (i,j,k) \text{ is } (1,2,3), (2,3,1), \text{ or } (3,1,2), \\
-1 & \text{if } (i,j,k) \text{ is } (3,2,1), (1,3,2), \text{ or } (2,1,3), \\
\;\;\,0 & \text{if } i = j, \text{ or } j = k, \text{ or } k = i
\end{cases}.
$$
Both the cross-product and determinant are properly defined using this, with
$$
\mathbf{a}\times\mathbf{b} = \sum_{i,j,k=1}^3 \mathbf{e}_i \;\varepsilon_{ijk} \, a_j b_k
$$
and
$$
\det A
=
\begin{vmatrix}
A_{11}&A_{12}&A_{13}\\
A_{21}&A_{22}&A_{23}\\
A_{31}&A_{32}&A_{33}\\
\end{vmatrix}
=
\sum_{i,j,k=1}^3
\varepsilon_{ijk} \,
A_{1i}
A_{2j}
A_{3k}
$$
which allows us to use our mnemonic for calculating the latter (an expansion in the minors, the $2\times 2$ submatrices) to remember how to calculate the former.
If you think it could be improved, by all means improve it!
– JCW Feb 22 '21 at 12:34