$\require{begingroup} \begingroup$ $\def\e{\mathrm{e}}\def\W{\operatorname{W}}\def\Wp{\operatorname{W_0}}\def\Wm{\operatorname{W_{-1}}}\def\Catalan{\mathsf{Catalan}}$
Is there a known closed form solution to
\begin{align} I_n&= \int_0^1\frac{\ln(1+x^{2n})}{1+x^2} \,dx =? \tag{0}\label{0} \end{align}
It checks out numerically, for $n=1,\dots,7$ that
\begin{align} I_1= \int_0^1\frac{\ln(1+x^2)}{1+x^2} \,dx &= \tfrac\pi2\,\ln2-\Catalan \tag{1}\label{1} ,\\ I_2= \int_0^1\frac{\ln(1+x^{2\cdot2})}{1+x^2} \,dx &= \tfrac\pi2\,\ln(2+\sqrt2)-2\Catalan \tag{2}\label{2} ,\\ I_3= \int_0^1\frac{\ln(1+x^{2\cdot3})}{1+x^2} \,dx &= \tfrac\pi2\,\ln6-3\Catalan \tag{3}\label{3} ,\\ I_4= \int_0^1\frac{\ln(1+x^{2\cdot4})}{1+x^2} \,dx &= \tfrac\pi2\,\ln(4+\sqrt2+2\sqrt{4+2\sqrt2})-4\Catalan \tag{4}\label{4} ,\\ I_5= \int_0^1\frac{\ln(1+x^{2\cdot5})}{1+x^2} \,dx &= \tfrac\pi2\,\ln(10+4\sqrt5)-5\Catalan = \tfrac\pi2\,\ln(10\cot^2\tfrac\pi5)-5\Catalan \tag{5}\label{5} ,\\ I_6= \int_0^1\frac{\ln(1+x^{2\cdot6})}{1+x^2} \,dx &= \tfrac\pi2\,\ln((5\sqrt2+2\sqrt{12})(1+\sqrt2))-6\Catalan \tag{6}\label{6} ,\\ I_7= \int_0^1\frac{\ln(1+x^{2\cdot7})}{1+x^2} \,dx &= \tfrac\pi2\,\ln(14\cot^2\tfrac\pi7)-7\Catalan \tag{7}\label{7} , \end{align}
so \eqref{0} seems to follow the pattern
\begin{align} I_n&= \tfrac\pi2\,\ln(f(n))-n\Catalan \tag{8}\label{8} \end{align}
for some function $f$.
Items \eqref{5} and \eqref{7} look promising as they agree to $f(n)=2n\cot^2(\tfrac\pi{n})$, but the other fail on that.
Edit:
Also, it looks like \begin{align} \int_1^\infty\frac{\ln(1+x^{2n})}{1+x^2} \,dx &=\tfrac\pi2\,\ln(f(n))+n\Catalan \tag{9}\label{9} \end{align}
and
\begin{align} \int_0^\infty\frac{\ln(1+x^{2n})}{1+x^2} \,dx &=\pi\,\ln(f(n)) \tag{10}\label{10} \end{align}
with the same $f$.
Edit
Thanks to the great answer by @Quanto, the function $f$ can be defined as
\begin{align} f(n)&= 2^n\!\!\!\!\!\!\!\!\!\! \prod_{k = 1}^{\tfrac{2n-1+(-1)^n}4} \!\!\!\!\!\!\!\!\! \cos^2\frac{(n+1-2k)\pi}{4n} \tag{11}\label{11} . \end{align}
$\endgroup$