How to evaluate the integral $\int_{-\infty}^a e^{-x^2} dx$?
I know that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$ because if I let $I = \int_{-\infty}^{\infty} e^{-x^2} dx$, then
\begin{align*} I^2 &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{-x^2 -y^2} dx dy \\ &= \int_{0}^{\infty}\int_{0}^{2\pi} e^{-r} r dr d\theta\\ &= 2\pi \int_{0}^\infty e^{-r^2} r dr\\ &= \pi \end{align*} where the second equal sign follows from polar transformation. However, what if I'm interested in evaluating $\int_{-\infty}^a e^{-x^2} dx$? I'm having trouble translating $\int_{-\infty}^a$ into the correct bounds on $r$ and $\theta$.