Everyone knows the principle of induction, where you first prove a base case for some $n_0\in \mathbb{N}$, and than show that by assuming the case for an $n \in \mathbb{N}$ the $n+1$ case follows. This is true because of the application of some sort of domino principle. However, you could also try to combine this principle with an epsilon proof. For any statement $S_x$, show that $S_{x_{0}}$ holds and than show that from $S_x$, $S_{x+\epsilon}$ follows, for $|\epsilon |>0$, where $\epsilon,x_0,x \in \mathbb{R}$. If I am not mistaken this should at least work for proving statements for all rational numbers, please correct me if I am wrong(I am still new to this). But does this also work for proofs of real numbers and if not, is there some sort of "induction for the reals"?
I hope that I could make my question clear enough. I am quite sorry for any sort of mistakes and hope nonetheless, that you could help/correct me.