Given that $\mathbb{E}|X| < \infty$, then the min of $\mathbb{E}|X-a|$ is taken at $a$ = median of X, and nowhere else.
The proof my professor gave is the following:
$\mathbb{E}|X| < \infty $ => $\mathbb{E}|X-a| < \infty$. Assume $0$ is the median of X, then $$ \mathbb{P}(X\leq 0) \geq 0.5 $$ $$ \mathbb{P}(X\geq 0) \geq 0.5 $$ given that $a>0$ $$\mathbb{E}(|X-a|-|X|) \geq a \cdot \mathbb{P}(X\leq0) - a \cdot \mathbb{P}(X > 0) \geq 0$$ Can someone please elaborate more on this proof? I'm not quite sure where did $a \cdot \mathbb{P}(X\leq0) - a \cdot \mathbb{P}(X > 0)$ comes from.