$f_{\small X,Y}(x,y)$ does not equal 1 except when the values are in the support.
Always include the support in a density function. This is usually done by using an indicator function. That is a piecewise function equal to one when the indicated condition holds, but zero when it does not: $$\begin{align}f_{\small X,Y}(x,y)&=\mathbf 1_{0<x<1,0<y<1}\\[1ex]&=\begin{cases} 1 & : & 0<x<1, 0<y<1 \\ 0 & : & \textsf{otherwise}\end{cases}\end{align}$$
So, indeed you have found the support for $\langle U,V\rangle$ is: $$\{\langle u, v\rangle: v<u<1+v, 0<v<1\}$$
Which can also be written as:
$${\{\langle u,v\rangle: 0<u<2,\max\{0,u-1\}<v<\min\{1,u\}\}\\[2ex]\text{or}\\[2ex]\{\langle u,v\rangle: 0<u<1, 0<v<u\}\cup\{\langle u,v\rangle:1\leqslant u<2, u-1<v<1\}}$$
So we have that :$$\begin{align}f_{\small U,V}(u,v) & = f_{\small X,Y}(u-v, v)\\[1ex]&=\mathbf 1_{0<v<1, v<u<1+v}\\[1ex] &= \mathbf 1_{0<u<1, 0<v<u}+\mathbf 1_{1\leqslant u<2, u-1<v<1}\end{align}$$
Thus $f_{\small V}(v)$ is found by using the former:$$\begin{align}f_{\small V}(v) &=\int_\Bbb R f_{\small X,Y}(u-v,v) \mathrm d u\\& = \int_v^{1+v} \mathbf 1_{0<v<1}\,\mathrm d u\\&= \mathbf 1_{0<v<1}\end{align}$$
Likewise $f_{\small U}(u)$ is found by using the later: $$\begin{align}f_{\small U}(u) &=\int_{0<v<u}\mathbf 1_{0<u<1} \,\mathrm d v+\int_{1-u<v<1} \mathbf 1_{1\leqslant u<2}\,\mathrm d v\\[1ex]&=u\,\mathbf 1_{0<u<1}+(2-u)\,\mathbf 1_{1\leqslant u<2}\\[1ex]&=\begin{cases} u&:& 0<u<1\\ 2-u&:& 1\leqslant u<2\end{cases}\end{align}$$