Define $u$ to be an integer with a decimal representation $\overline{a_{n}a_{n - 1}a_{n - 2}\cdots a_{2}a_{1}a_{0}}$. Then, define $u'$ to be the integer whose decimal representation is the reverse order of the decimal representation $\overline{a_{0}a_{1}a_{2}\cdots a_{n-2}a_{n-1}a_{0}}$.
Writing $u$ and $u'$ in expanded form, \begin{align*} u &\;=\; (10^{n})(a_{n}) + (10^{n - 1})(a_{n - 1}) + (10^{n - 2})(a_{n - 2}) + \cdots + (10^{2})(a_{2}) + (10^{1})(a_{1}) + (10^{0})(a_{0}) \\ u' &\;=\; (10^{0})(a_{n}) + (10^{1})(a_{n - 1}) + (10^{2})(a_{n - 2}) + \cdots + (10^{n - 2})(a_{2}) + (10^{n - 1})(a_{1}) + (10^{n})(a_{0}) \end{align*}
By evaluating $u - u'$, we get $\displaystyle\sum_{k = 0}^{n}(10^{n - k} - 10^{k})(a_{k})$. For $u - u'$ to be divisible by 9, $(10^{n - k} - 10^{k})$ must be divisible by 9. Solving for the remainder of $(10^{n - k} - 10^{k})$ when divided by 9,
\begin{align*} r &\;\equiv\; (10^{n - k} - 10^{k}) \bmod 9 \\ r &\;\equiv\; (10^{n - k} \bmod 9) - (10^{k} \bmod 9) \\ r &\;\equiv\; \left((10 \bmod 9)^{n - k} \bmod 9\right) - \left((10 \bmod 9)^{k} \bmod 9\right) \\ r &\;\equiv\; \left(1^{n - k} \bmod 9\right) - \left(1^{k} \bmod 9\right) \\ r &\;\equiv\;1 - 1 \\ r &\;\equiv\; 0 \end{align*}
Since the remainder is zero, this implies that the difference of an integer and its reverse order is divisible by 9.
Is my proof correct, by any chance? I got curious about this when I used the calculator out of boredom.
I think the part where I solved for the remainder seems weird, but is there a chance that it is correct, though notationally wrong? If it is wrong, what should I do?