Show that $\gcd(\gcd(a,b),b)=\gcd(a,b)$.
Let $k=\gcd(a,b)$. Show that $\gcd(k,b)=k$
Since $k\mid a$ and $k\mid b$ (clearly $k\mid k$) we see that $k|\mid\gcd(k,b)$ and $k \leq \gcd(k,b)=\gcd(\gcd(a,b),b)$.
Now I need to show that $\gcd(k,b) \leq k$ and so $\gcd(\gcd(a,b),b)=\gcd(a,b)$
Any hints or solutions are greatly appreciated.