0

$$\sum_{k=0}^{N-1} e^{-j\frac{2\pi}{N}(i + n)k} = \begin{cases} N & \text{for } (i + n) = 0,N,2N,3N, \ldots \\ 0 & \text{otherwise} \end{cases} = N\delta[(i + n)\text{ mod }N]$$

Can someone provide an explanation why the sum is equal to zero if (i+n) mod N is not equal to zero?

Theo Bendit
  • 50,900
u_any_45
  • 153

1 Answers1

1

For any polynomial where the coefficient of the leading term $=1$, then the coefficient of the second term is the negative sum of the roots. Therefore for $z^n-1=0$, the sum$=0$.