\begin{align}
x &\equiv 2\pmod{ 6y+1} \\
x &\equiv 3\pmod{12y+1} \\
x &\equiv 1\pmod{18y+1}
\end{align}
Note
\begin{align}
2( 6y+1) - 1(12y+1) &= 1 \\
3(12y+1) - 2(18y+1) &= 1 \\
-2(18y+1) + 3( 6y+1) &= 1 \\
\end{align}
So the numbers $6y+1, 12y+1$, and $18y+1$ are pairwise prime.
\begin{align}
(12y+1)(18y+1)
&\equiv 216y^2+30y+1 \pmod{6y+1} \\
&\equiv (216y^2+30y+1)\pmod{6y+1} \\
&\equiv (36y-1)(6y+1) + 2 \pmod{6y+1} \\
&\equiv 2 \pmod{6y+1} \\
&\equiv 0 \pmod{12y+1} \\
&\equiv 0 \pmod{18y+1}
\end{align}
\begin{align}
-12(6y+1)(18y+1)
&\equiv (-1296y^2-288y-12) \pmod{12y+1} \\
&\equiv (-108y - 15)(12y + 1) + 3 \pmod{12y+1} \\
&\equiv 0 \pmod{6y+1} \\
&\equiv 3 \pmod{12y+1} \\
&\equiv 0 \pmod{18y+1}
\end{align}
\begin{align}
(9y+5)(6y+1)(12y+1)
&\equiv 648y^3 + 522y^2 + 99y + 5 \\
&\equiv (36y^2 + 27y + 4)(18y + 1) + 1 \pmod{18y+1} \\
&\equiv 0 \pmod{6y+1} \\
&\equiv 0 \pmod{12y+1} \\
&\equiv 1 \pmod{18y+1}
\end{align}
\begin{array}{c}
(12y+1)(18y+1)-12(6y+1)(18y+1)+(9y+5)(6y+1)(12y+1) \\
= 648y^3-558y^2-159y-6
\end{array}
So, a solution is $$648y^3-558y^2-159y-6 \pmod{(6y+1)(12y+1)(18y+1)}$$