Let $A: B_1 \rightarrow B_2$ be a mapping, where $B_1$, $B_2$ are two Banach Spaces.
Then the adjoint of $A$, $A^*$, is defined by
$A^*:B_2^* \rightarrow B_1^*$ s.t for all $f \in B_1^*, f:B_1 \rightarrow \mathbb{R}$ is linear.
$\langle Ax{,}y\rangle$=$\langle x{,}A^*y\rangle$
My Question is: why when dealing with Hilbert Spaces $H_1$ and $H_2$, we simply say: IF $A:H_1 \rightarrow H_2$, THEN $A^*:H_2 \rightarrow H_1$, without taking into consideration $H_2^*$ and $H_1^*$ ?