I would like to calculate the Fourier Transform for $$ \frac{1}{1+x^2}. $$
By definition \begin{align}\DeclareMathOperator{atan}{atan} \int_{-\infty}^{\infty}\frac{1}{1+x^2}e^{-i\omega x}dx &= e^{-i\omega x}\atan(x) + i\omega\int_{-\infty}^\infty e^{-i\omega x}\atan(x)dx \\ &= e^{-i\omega x}\atan(x) + i\omega\frac{\atan(x)e^{-i\omega x}}{-i\omega} - i\omega\int_{-\infty}^{\infty}\frac{1}{1+x^2}e^{-i\omega x}. \end{align}
Thus $$ \int_{-\infty}^{\infty}\frac{1}{1+x^2}e^{-i\omega x}dx = \left.\frac{e^{-i\omega x}\atan(x) + i\omega\frac{atan(x)e^{-i\omega x}}{-i\omega}}{1+i\omega}\right |_{-\infty}^{\infty} $$
and now I'm stuck with how I should carry on.
Original question : How can I calculate the following limit $$ \lim_{x\rightarrow\infty}\atan(x)e^{-i\omega x} $$
where $\omega\in \mathbb{R}$.