You cannot obtain the analytical solution of the equation but you can obtain explicit asymptotic expressions of $x$.
To simplify the notations, let $a=b^5$ and we shall try to solve
$$x^5-x-b^5=0$$ assuming $b>0$. Using high-order methods (order $n$) we shall have
$$x_{0}=b+\frac{b}{5 b^4-1}$$
$$x_{1}=b+\frac{5 b^5-b}{25 b^8+1}$$
$$x_{2}=b+\frac{25 b^9+b}{125 b^{12}+25 b^8+5 b^4-1}$$
$$x_{3}=b+\frac{125 b^{13}+25 b^9+5 b^5-b}{625 b^{16}+250 b^{12}+50 b^8-5 b^4+1}$$
$$x_{4}=b+\frac{625 b^{17}+250 b^{13}+50 b^9-5 b^5+b}{3125 b^{20}+1875 b^{16}+500 b^{12}+6 b^4-1}$$
$$x_{5}=b+\frac{3125 b^{21}+1875 b^{17}+500 b^{13}+6 b^5-b}{15625 b^{24}+12500 b^{20}+4375 b^{16}+375 b^{12}+35 b^8-7 b^4+1}$$ Suppose that we do this forever.
Using $b=3$, some results
$$\left(
\begin{array}{ccc}
n & x_{n} & \text{decimal representation} \\
0 & \frac{1215}{404} & 3.007425742574257425742574 \\
1 & \frac{246645}{82013} & 3.007389072464121541706803 \\
2 & \frac{100137870}{33297277} & 3.007389162783491274676905 \\
3 & \frac{6254765325}{2079799117} & 3.007389162671713933610637 \\
4 & \frac{33012650893518}{10977179575985} & 3.007389162671662103584418 \\
5 & \frac{13403136063083787}{4456734841451944} & 3.007389162671662635777060 \\
6 & \frac{680209145067512871}{226179289833989464} &3.007389162671662634787269 \\
7 & \frac{2209319270264084987187}{734630322436023080017} & 3.007389162671662634787290 \\
8 & \frac{896983610363648795857113}{298259906465446908872354} & 3.007389162671662634787294
\end{array}
\right)$$