I have a continuous function $f:\mathbb{R}^n\to\mathbb{R}$ such that $\forall x,y\in\mathbb{R}^n$ I have that $f(x)\ge\cfrac{1}{2}f(x-y)+\cfrac{1}{2}f(x+y)$.
How can I prove that $\forall x,y\in\mathbb{R}^n$ and $\forall t\in[0,1]$ I have that $f(tx+(1-t)y)\ge tf(x)+(1-t)f(y)$ ?