10

Find the sum: $$\sum_{n=0}^\infty \frac{(n!)^2}{(2n)!}x^n$$

My try:

I played a bit with the coefficient to make it look easier/familiar:

First attempt: $$\begin{align} \sum_{n=0}^\infty \frac{(n!)^2}{(2n)!}x^n &= \sum_{n=0}^\infty \frac{n!}{2^n(2n-1)!!}x^n \\ &= \sum_{n=0}^\infty \frac{n!}{(2n-1)!!}\left(\frac x2\right)^n \end{align}$$ Second attempt: $$\begin{align} \sum_{n=0}^\infty \frac{(n!)^2}{(2n)!}x^n &= \sum_{n=0}^\infty \frac{n!\cdot n!}{(n+n)!}x^n \\ &= \sum_{n=0}^\infty \frac{1}{{2n \choose n}}x^n \end{align}$$ However, I could not proceed with any of them. Also, I have figured out that the convergence radius is $4$.

My research:

I have also found the same sum has been discussed at AoPS, which unfortunately uses Beta function that my course has not covered yet.
Entering the sum to Wolphram Alpha, I got the following output for the partial sum:

$$\sum_{n=0}^k\frac{(n!)^2x^n}{(2n)!}=\frac{4\sqrt{x}\left(\sin^{-1}\left(\frac{\sqrt{x}}{2}\right)-\frac{2^{2k}k!(k+1)!B_\frac{x}{4}\left(k+\frac{1}{2},\frac{3}{2}\right)}{(2k)!}\right)}{(4-x)^{3/2}}+\frac{4}{4-x}.$$

My background:

As I have already mentioned, I cannot use Gamma, Beta or similar functions. I only know about the convergence theorems on functional series and operations on them. So, I'm looking for some method that uses quite elementary tricks.

Thanks in advance.

NodeJS
  • 877
  • 3
    Hope this helps $$\sum _{n=0}^{\infty } \frac{(n!)^2 x^n}{(2 n)!}=\frac{4 \left(\sqrt{4-x}+\sqrt{x} \arcsin\left(\frac{\sqrt{x}}{2}\right)\right)}{\sqrt{4-x} (4-x)}$$ radius of convergence $r=4$ – Raffaele Feb 10 '21 at 10:07
  • @Raffaele how did you get that? It should definitely be an answer. – A-Level Student Feb 10 '21 at 10:11
  • 1
    @A-LevelStudent With Mathematica. Maybe it can give some idea to solve it. It's not fair publishing a result as an answer without the proof. – Raffaele Feb 10 '21 at 10:12
  • 6
    In equation $(2)$ of this answer, it is shown that $$ \sum_{n=0}^\infty\frac{x^n}{\binom{2n}{n}} =\frac4{4-x}\left[1+\sqrt{\frac{x}{4-x}}\sin^{-1}\left(\frac{\sqrt{x}}2\right)\right] $$ – robjohn Feb 10 '21 at 10:18
  • @robjohn Thanks for the link. But I don't understand where $$\frac{x^n}{{2n \choose n}} = \frac{nx}{2}\int_0^1 \left(\frac{x(1-t^2)}{4}\right)^{n-1}dt$$ did come from. Is it related to the work done above it including $\Gamma$? – NodeJS Feb 10 '21 at 10:26
  • @NodeJS: It follows from the previous line by multiplying by $\frac{x^n}{4^n}$. – robjohn Feb 10 '21 at 10:30
  • 1
    Check this: https://math.stackexchange.com/a/548570. – Martin R Feb 10 '21 at 10:31
  • @robjohn Yes, I was about that. It uses the Gamma and Beta functions, though. Thank you for your attention, I hope I will have these tools soon and will see your solution again :) – NodeJS Feb 10 '21 at 10:34
  • 1
    Many posts with close relatives (here's my own one), but no dedicated question I could see until now ;) – metamorphy Feb 10 '21 at 21:48
  • Seems like I was following this question thread, so got the notification about the closing. However, I'm not really convinced that the linked question answers this question since the OP is requesting for an approach without Gamma or Beta functions while the only answer there does use one of them. – VIVID Nov 08 '23 at 08:35

2 Answers2

7

Suppose that $\displaystyle f(x) = \sum_{n\geqslant 0} a_n x^n$ with $a_0=1$. We shall assume that the series has non-zero radius of convergence. Then, \begin{align*} \frac{1}{2}\frac{d}{dx} \Big( x^2 f(x^2)\Big) = \sum_{n \geqslant 0} (n+1)a_n x^{2n+1} \quad \tag{1}\label{A} \end{align*} and \begin{align*} 2x \frac{d}{dx} \Bigg( \frac{f(x^2)-1}{x} \Bigg) &= \sum_{n \geqslant 1} 2(2n-1)a_n x^{2n-1} \\ &=\sum_{n \geqslant 0}2(2n+1) a_{n+1} x^{2n+1} \tag{2}\label{B} \end{align*} If $f$ now satisfies the differential equation, \begin{align*} 2x \frac{d}{dx} \Bigg( \frac{f(x^2)-1}{x} \Bigg) = \frac{1}{2} \frac{d}{dx} \Big(x^2 f(x^2)\Big) \tag{3}\label{C} \end{align*} we can equate coefficients in the power series \eqref{A} and \eqref{B} to derive, \begin{align*} a_{n+1} = \frac{n+1}{2(2n+1)} a_n, \quad a_0 = 1 \end{align*} which means \begin{align*} a_n = \frac{n!}{2^n(2n-1)(2n-3) \cdots 1} = \frac{(n!)^2}{(2n)!}. \end{align*} and \begin{align*} f(x) = \sum_{n \geqslant 0} \frac{(n!)^2}{(2n)!} x^n. \end{align*} Introduce $\phi(x) = (f(x^2)-1)/x$ so that the differential equation \eqref{C} becomes, \begin{align*} (4-x^2)\phi' -3x \phi = 2 \end{align*} Multiply this by the integrating factor $(4-x^2)^{1/2}$ to obtain, \begin{align*} (4-x^2)^{3/2} \phi' - 3x (4-x^2)^{1/2}\phi=2(4-x^2)^{1/2} \end{align*} which is the same as \begin{align*} \frac{d}{dx} \Big( (4-x^2)^{3/2} \phi \Big) = 2(4-x^2)^{1/2} \tag{4}\label{D}. \end{align*} We note that by construction $\phi(0)=0$.

The right hand side may be integrated using the substitution $x=2\sin\theta$ to give, \begin{align*} \int_0^\xi 2(4-x^2)^{1/2} dx &= 8\int_0^{\sin^{-1}(\xi/2)} \cos^2\theta d\theta \\ &=8 \Big[ \sin\theta\cos\theta \Big]_0^{\sin^{-1}(\xi/2)} + 8\int_0^{\sin^{-1}(\xi/2)} \sin^2\theta d\theta \\ &=8 (\xi/2) (1-\xi^2/4)^{1/2}+8\int_0^{\sin^{-1}(\xi/2)} 1-\cos^2\theta d\theta \\ &= 2 \xi (4-\xi^2)^{1/2} + 8\sin^{-1}(\xi/2) - 8\int_0^{\sin^{-1}(\xi/2)} \cos^2\theta d\theta \end{align*} from which we see, \begin{align*} \int_0^\xi 2(4-x^2)^{1/2} dx = \xi(4-\xi^2)^{1/2} + 4\sin^{-1}(\xi/2). \end{align*} Substituting this in \eqref{D}, and recalling $\phi(0)=0$, we get \begin{align*} \phi(x)(4-x^2)^{3/2} = x(4-x^2)^{1/2} + 4\sin^{-1}(x/2) \end{align*} yielding \begin{align*} f(x) &= \sqrt x \phi(\sqrt x) + 1 \\ &= 1 + \frac{x}{4-x}+\frac{4\sqrt x \sin^{-1}(\frac{\sqrt x }{2})}{(4-x)^{3/2}} \\ &=\frac{4}{4-x}\Bigg(1 + \frac{\sqrt{x} \sin^{-1}(\frac{\sqrt{x}}{2})}{\sqrt{4-x}} \Bigg) \end{align*}

WA Don
  • 4,488
4

More than tricky ! (and done using a CAS). $$\sum_{n=0}^p \frac{(n!)^2}{(2n)!}x^n=\frac d {dx}\Bigg[\sum_{n=0}^p \frac{(n!)^2}{(n+1)\,(2n)!}x^{n+1}\Bigg]$$ $$\sum_{n=0}^p \frac{(n!)^2}{(n+1)\,(2n)!}x^{n+1}=x \, _3F_2\left(1,1,1;\frac{1}{2},2;\frac{x}{4}\right)+\color{red}{\text{monster}}$$ $$\color{red}{\text{monster}}=\frac{((p+1)!)^2 x^{p+2} \, _3F_2\left(1,p+2,p+2;p+\frac{3}{2},p+3;\frac{x}{4}\right)}{(p+2) (2 (p+1))!}$$ $$\frac d {dx}\Big[x \, _3F_2\left(1,1,1;\frac{1}{2},2;\frac{x}{4}\right)\Big]=\frac{4}{4-x}+\frac{4 \sqrt{x} \sin ^{-1}\left(\frac{\sqrt{x}}{2}\right)}{(4-x)^{\frac 32}}$$ and $$\frac d {dx}\big[\color{red}{\text{monster}}\big]=\frac{x^{p+1} \Gamma (p+2)^2 \, _2F_1\left(1,p+2;p+\frac{3}{2};\frac{x}{4}\right)}{\Gamma (2 p+3)}$$ which, in the radius of convergence, tends very quickly to $0$.

  • 2
    Thank you for your attention! But I was looking for a quite elementary approach without $\beta, \Gamma, F$ functions that I cannot use. – NodeJS Feb 10 '21 at 11:54