Prove by Induction that
$$7|4^{2^{n}}+2^{2^{n}}+1,\; \forall n\in \mathbb{N}$$
Base case:
$$ \begin{aligned} 7&|4^{2^{1}}+2^{2^{1}}+1,\\ 7&|7\cdot 3 \end{aligned}$$ Which is true.
Now, having $n=k$, we assume that:
$$7|4^{2^{k}}+2^{2^{k}}+1,\;\; \forall k\in \mathbb{N}$$
We have to prove that for $n=k+1$ that,
$$7|4^{2^{k+1}}+2^{2^{k+1}}+1,\;\; \forall k\in \mathbb{N}$$
We know that if $a$ is divisible by 7 then $b$ is divisible by 7 iff $b-a$ is divisible by 7.
Then, $$ \begin{aligned} b-a &= 4^{2^{k+1}}+2^{2^{k+1}}+1 - (4^{2^{k}}+2^{2^{k}}+1)\\ &= 4^{2^{k+1}}+2^{2^{k+1}} - 4^{2^{k}}-2^{2^{k}}\\ &= 4^{2\cdot 2^{k}}+2^{2\cdot 2^{k}} - 4^{2^{k}}-2^{2^{k}} \end{aligned} $$
I get stuck here, please help me.
\in
, not\epsilon
. – K.defaoite Feb 07 '21 at 20:16