Let $F$ be a field and let $f(x) \in F[x]$. Prove that $f(x) + \langle x^2 − x \rangle$ is a unit in the quotient ring $F[x]/ \langle x^2 − x \rangle$ if and only if $f(0)f(1) \neq 0$.
$\textbf{My Attempt:}$
prove "$\implies$":
Assume $f(x) + \langle x^2 − x \rangle$ is a unit in the quotient ring $F[x]/ \langle x^2 − x \rangle$.
Then, $(f(x) + \langle x^2 − x \rangle) \cdot (f(x) + \langle x^2 − x \rangle) = f(x)f(x) + \langle x^2 − x \rangle = 1 + \langle x^2 − x \rangle$.
Then, $f(x)f(x) = 1$ $\implies$ $f(x) \neq 0$.
Then, neither $f(0)$ nor $f(1)$ can be equal to $0$. So does $f(0)f(1)$. So, $f(0)f(1) \neq 0$.
prove "$\Longleftarrow$":
Assume $f(0)f(1) \neq 0$. Then, $f(0) \neq 0$ and $f(1) \neq 0$.
Which I am getting stucked on how to related $f(0) \neq 0$ and $f(1) \neq 0$ to proving that $f(x) + \langle x^2 − x \rangle$ is a unit in the quotient ring.
Also, I don't know if the prove of "$\implies$" is correct as well.