$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[5px,#ffd]{\sum_{r = 0}^{c - 1}{r + n \choose n}{1 \over c - r}}
\\[2mm] = &\
\bracks{z^{c}}\sum_{\ell = 0}^{\infty}z^{\ell}
\sum_{r = 0}^{\ell - 1}{r + n \choose n}
{1 \over \ell - r}
\\[5mm] = &\
\bracks{z^{c}}\sum_{r = 0}^{\infty}{r + n \choose n}
\sum_{\ell = r + 1}^{\infty}\,\,{z^{\ell} \over
\ell - r}
\\[5mm] = &\
\bracks{z^{c}}\sum_{r = 0}^{\infty}
{r + n \choose n}z^{r}\
\underbrace{\sum_{\ell = 1}^{\infty}\,\,
{z^{\ell} \over \ell}}_{\ds{-\ln\pars{1 - z}}}
\\[5mm] = &\
-\bracks{z^{c}}\ln\pars{1 - z}\ \times
\\[2mm] &\
\sum_{r = 0}^{\infty}
{\bracks{-r - n} + r - 1 \choose r}
\pars{-1}^{r}\,z^{r}
\\[5mm] = &\
-\bracks{z^{c}}\ln\pars{1 - z}
\sum_{r = 0}^{\infty}
{- n - 1 \choose r}\pars{-z}^{r}
\\[5mm] = &\
-\bracks{z^{c}}\ln\pars{1 - z}\pars{1 - z}^{-n - 1}
\\[5mm] = &\
-\bracks{z^{c}}\bracks{\nu^{1}}
\pars{1 - z}^{\nu -n - 1}
\\[5mm] = &\
-\bracks{\nu^{1}}
{\nu - n - 1 \choose c}\pars{-1}^{c}
\\[5mm] = &\
-\bracks{\nu^{1}}{-\nu + n + 1 + c - 1 \choose c}
\pars{-1}^{c}\pars{-1}^{c}
\\[5mm] = &\
-\bracks{\nu^{1}}{c + n - \nu \choose c}
\\[5mm] = &\
\left.{n + c - \nu \choose c}
\pars{H_{n + c - \nu}\ -\ H_{n - \nu}}
\right\vert_{\ \nu\ =\ 0}
\\[5mm] = &\
\bbx{{n + c \choose c}
\pars{H_{n + c}\ -\ H_{n}}} \\ &
\end{align}