Let me use $n = 3$ to make this easier to write and picture
The trick here is that the matrix
$$\begin{pmatrix} x^2 & xy & xz \\ xy & y^2 & yz \\ xz & yz & z^2 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \begin{pmatrix} x & y & z \end{pmatrix}$$
is rank 1.
So we have
$$J_f^\top J_f = \frac{1}{c^2}\left( cI - u u^\top \right)$$
where $c = (1 + x^2 + y^2 + z^2)$ and $u^\top = \begin{pmatrix} x & y & z \end{pmatrix}$.
And now we use a common formula for the determinant of a rank-1 update:
$$\det(I + uv^\top) = 1 + u^\top v.$$
See e.g. Determinant of rank-one perturbations of (invertible) matrices or https://en.wikipedia.org/wiki/Matrix_determinant_lemma
So we obtain
\begin{align}
\det(J_f^\top J_f) &= \frac{1}{c^{2n}}\det(cI - u u^\top) \\
&= \frac{1}{c^n} \det\left(I - \frac{1}{c} u u^\top \right) \\
&= \frac{1}{c^n} \left( 1 - \frac{1}{c} u^\top u \right) \\
&= \frac{1}{c^{n+1}} \left[ (1 + x_1 + \dots + x_n) - (x_1 + \dots + x_n) \right] \\
&= \frac{1}{c^{n+1}}.
\end{align}
So the final answer is
$$\det(J_f^\top J_f) = \frac{1}{(1 + x_1 + \dots + x_n)^{n+1}}.$$