Let $x_1=1, x_2=4$ be the data on a random sample of size $2$ from a Poisson($\theta$) distribution, where $\theta \in (0,\infty)$. Let T be the uniformly minimum variance unbiased estimate of T($\theta$)= $\sum_{k=4}^{\infty}\frac{e^{-\theta}\theta^k}{k!}$ based on the given data. Then T equals____?
I am using $x$ instead of $k$.
$P(X\ge 4)=\sum_{x=4}^{\infty}\frac{e^{-\theta}\theta^x}{x!}$
$I(X_1)=1$ if $X\ge4$,$0$ otherwise
So using Rao–Blackwell theorem
$E(I(X_1)|T=\sum_{i}X_i)$ =$1\cdot P\left( \dfrac{X_1\ge4,X_1+X_2+...+X_n=T}{T=\sum_{i}X_i} \right)$
How do I solve this? if I was given $X_1=1$ I would've utilized it and then used the fact of independence but I am not sure how to proceed here. Also, tell me if there is any other way possible way to solve this problem.