Answer posted to provide industrial strength approach for new students.
To prove:
$|a + b| + |a - b| = 2\max(a,b).$
Either $a \geq b,$ or $a < b.$
Further, either $(a+b) \geq 0$ or $(a+b) < 0.$
Case 1:
$a \geq b$ and $(a+b) \geq 0.$
Then $|a + b| + |a - b| = (a+b) + (a-b) = 2a = 2\max(a,b).$
The assertion is always true in this case.
Case 2:
$a \geq b$ and $(a+b) < 0.$
Then $|a + b| + |a - b| = -(a + b) + (a - b) = -2b.$
$2a = 2\max(a,b).$
The assertion is not always true in this case.
Case 3:
$a < b$ and $(a+b) \geq 0.$
Then $|a + b| + |a - b| = (a+b) + (b-a) = 2b = 2\max(a,b).$
The assertion is always true in this case.
Case 4:
$a < b$ and $(a+b) < 0.$
Then $|a + b| + |a - b| = -(a+b) + (b - a) = -2a.$
$2b = 2\max(a,b).$
The assertion is not always true in this case.