-1

Consider the ring of numbers $\Bbb{Z}$ [i] = {a + bi | a, b $\in$ $\Bbb{Z}$, $i^{2}$ = 1}

Prove that if p and q are coprime integers, then gcd(p + qi, p - qi) | 2.


so gcd(p, q) = 1, you can say there exists a,b $\in$ $\Bbb{Z}$[i] where ap + bq = 1

Any help would be appreciated thanks

Bill Dubuque
  • 272,048
tinky
  • 77

1 Answers1

2

We can see that $\,\gcd(p+qi,p-qi)$ divides both $(p+qi)+(p-qi)=2p$ and $(p+qi)-(p-qi)=2qi$. Since $\gcd(2p,2qi)=2$, we conclude that $\gcd(p+qi,p-qi) \mid 2$.

Bill Dubuque
  • 272,048
Haran
  • 9,717
  • 1
  • 13
  • 47