Actually there is a general formula that ends with a twist in your case.
These are all formal/symbol flipping results and may blow up if not used carefully.
The following is a standard result that I repeat because I haven't seen a really elementary proof around.
Theorem 1. Let $f(t)$
be a formal Ordinary Generating function. Then formally the partial sums of the series are generated by $\frac{f(t)}{1-t}$
Proof. We have a OGF function indexed by $t^{i}$
:
$f(t)={\displaystyle \sum_{i=0}^{\infty}a_{i}\cdot t^{i}}$
Write the partial summation formula in t
as.
$ F(t)={\displaystyle \sum_{i=0}^{\infty}{\displaystyle t^{i}\cdot\left(\sum_{j=0}^{i}a_{j}\right)}}$
and generate f(t)
by subtracting adjacent $t^{i}$ terms .
$\left(1-t\right)\cdot F(t)=\sum_{i=0}^{\infty}{\displaystyle t^{i}\cdot\left(\sum_{j=0}^{i}a_{j}\right)}-\sum_{i=0}^{\infty}{\displaystyle t^{i}\cdot\left(\sum_{j=0}^{i-1}a_{j}\right)=\sum_{i=0}^{\infty}a_{i}\cdot t^{i}=f(t)}$
Thus: $F(t)=\left(\frac{1}{1-t}\right)\cdot f\left(t\right)$
QED
Now in your case we add a parameter $\lambda=\left(\frac{1}{3}\right)$
:
$f(t,\lambda)=\frac{1}{1-\lambda\cdot t}$
$F(t,\lambda)=\frac{1}{1-t}\cdot\frac{1}{1-\lambda\cdot t}$
Which doesn't look like the normal form $\frac{1-\lambda^{n}}{1-\lambda}$
but double checking in Maxima
b:(1/((1-t)(1-lt)));
powerseries(b,t,0);
$\sum_{i=0}^{\infty }\left( -\frac{{l}^{i+1}}{1-l}-\frac{1}{l-1}\right) \,{t}^{i}$
$\frac{1}{1-l}\cdot\sum_{i=0}^{\infty}\left(1-l^{i+1}\right)\cdot t^{i}$
As indeed it must be.