0

If $X \in L_{p}(\Omega,\mathcal{F},P)$ for some $p \in [1,+\infty]$ how can I show that for the conditional expectation $Y = \mathbb{E}[X|\mathscr{p}]$ we have $$Y \in L_{p}(\Omega,\mathcal{F},P)$$

1 Answers1

0

To make the notations clearer, I'll assume that $Y$ is the conditional expectation of $X$ given a sub-$\sigma$-algebra $\mathcal{G}$. Therefore we have $Y := \mathbb{E}[X|\mathcal{G}]$.

Now, if $p \in [1,+\infty[$, then the map $x \mapsto |x|^p$ is convex, and we can apply Jensen's Inequality for conditional expectation, therefore :

$$|Y|^p \le \mathbb{E}\left[|X|^p\,|\mathcal{G}\right] \tag{1} $$

Taking expectations of both sides in (1), we get

$$ \mathbb{E}\left[|Y|^p\right] \le \mathbb{E}\left[\mathbb{E}\left[|X|^p\,|\mathcal{G}\right]\right] =\mathbb{E}\left[|X|^p\right] $$

Hence, if $X \in L_{p}(\Omega,\mathcal{F},\mathbb{P})$, then $\mathbb{E}[X|\mathcal{G}] \in L_{p}(\Omega,\mathcal{F},\mathbb{P})$ too.