Let $n\in\mathbb{Z}^{+}$, then there exists $k\in\mathbb{Z}_0^+$, such that $n=5k + i, i\in\{0,1,2,3,4\}$. Now analyzing by cases we have:
- If $i=0$, then \begin{align*} n = 5k \Rightarrow n = 5k + 4(0). \end{align*}
- If $ i = 1 $, then \begin{align*} n & = 5k + 1 \\ & = 5k-5(3) +5(3) +1 \\ & = 5(k-3) + 15 + 1 \\ & = 5(k-3) +16 \Rightarrow n = 5(k-3) +4(4). \end{align*}
- If $ i = 2 $, then \begin{align*} n & = 5k + 2 \\ & = 5k-5(2) +5(2) +2 \\ & = 5(k-2) + 10 + 2 \\ & = 5(k-2) +12 \Rightarrow n = 5(k-2) +4(3). \end{align*}
- If $i=3$, then \begin{align*} n & = 5k + 3 \\ & = 5k-5 + 5 + 3 \\ & = 5(k-1) +8 \Rightarrow n = 5(k-1) +4(2). \end{align*}
- If $i=4$, then \begin{align*} n = 5k + 4 \Rightarrow n = 5k + 4(1). \end{align*}
Thus, every positive number can be expressed as a linear combination of $5$ and $4$. Now using that $n>11$, so we have: \begin{align*} n &> 11 \\ 5k + i &> 5(2) +1 \\ 5k-5(2) &> 1-i \\ 5 (k-2) &> 1-i \\ k-2 &> \frac{1-i}{5} \\ k &> 2+\frac{1-i}{5}. \end{align*} So by increasing over the values that $ i $ takes, we have: \begin{align*} k &> 2+ \frac{1-i}{5} \geq 2+ \frac{1-0}{5}\\ k &> 2 + 0.2 = 2.2 \end{align*} But $k\in\mathbb{Z}_0^+ \Rightarrow k \geq 3 \Rightarrow n \geq 15 $. Thus we have that every positive integer greater than or equal to $15$ is a non-negative linear combination of $5$ and $4$.
Finally, let's look at the cases that are still unverified, which are $12$, $13$ and $14$. \begin{align*} 12 &= 5(0) +4(3) \\ 13 &= 5(1) +4(2) \\ 14 &= 5(2) +4(1). \end{align*} Therefore, any positive integer greater than $11$ is a nonnegative linear combination of $5$ and $4$.
I think this is the correct solution, I await your comments. If anyone has a different solution or correction of my work I will be grateful.