If I have the statement $\lim_{x\to 0}f(x)=0$ and $$ f(x)=\begin{cases} x,&x>0\\ x-0.3,&x<0 \end{cases} $$ how do I prove that the statement is false?
Is this correct? $[f(x)-0]$ < e for every $[x-0]<d$
So if we choose e= 0.3 then it is $[f(x)]<0.3$ For every $[x]<d$
$-0.3<f(x)<0.3$ for x<d But where do i go next?