Let $f(x+1)=f(x)\cdot f(y)$, for all $x,y\in\mathbb{R}$. If $f(1)=8$ then find $f\left(\frac{2}{3}\right)$.
I'm trying to find it as below.
\begin{align} f(1)=f(0+1)=f(0)\cdot f(y)=8\\ f\left(\frac{2}{3}\right) = f\left(-\frac{1}{3}+1\right)=f\left(-\frac{1}{3}\right)\cdot f(y). \end{align}
Since I can't find $f(y), f(0), f\left(-\frac{1}{3}\right)$, now I confused how to find $f\left(\frac{2}{3}\right)$. Any hint to solve that?