The $y=f(x)$ in this case becomes $y=\pm\sqrt{1-x^2}$ and using symmetry across the $x$- and $y$-axes we can take $x\in[0,1]$, so with your limit formula we have
$$4\lim_{h\to 0} \sum_{r=1}^{\frac1h}\sqrt{\left\{\sqrt{1-(rh)^2}-\sqrt{1-((r-1)h)^2}\right\}^2 +h^2}\\
=4\lim_{h\to 0}\sum_{r=1}^{\frac 1h}\sqrt{2+2rh^2-2r^2h^2-2\sqrt{(1-r^2h^2)(1-r^2h^2+2rh^2-h^2)}}\\
=4\sqrt 2\lim_{h\to 0}\sum_{r=1}^{\frac 1h}\sqrt{1+rh^2-r^2h^2-\sqrt{(1+rh^2-r^2h^2)^2-h^2}}\\
r\in\left[1,\frac 1h\right]\to 1+rh^2-r^2h^2\in[h,1],\frac 1h\to n, \frac 1{1+rh^2-r^2h^2}\to t^2, t\in[1,\sqrt n]\\
=4\sqrt 2\lim_{n\to\infty}\frac 1n\sum_{t=1}^{\sqrt n}\sqrt{\frac 1{t^2}-\sqrt{\frac 1{t^4}-\frac 1{n^2}}}\\
=4\sqrt2\lim_{n\to\infty}\frac1{n}\sum_{t=1}^{\sqrt n}\frac {\sqrt{1-\sqrt{1-\frac{t^4}{n^2}}}}t\\
=4\sqrt2\lim_{n\to\infty}\frac 1n\sum_{t=1}^{\sqrt n}t\sqrt{\frac{\frac1{n^2}}{1+\sqrt{1-\frac{t^4}{n^2}}}}\\
=4\sqrt2\lim_{n\to\infty}\frac1{n^2}\sum_{t=1}^{\sqrt n}\frac t{\sqrt{1+\sqrt{1-\frac{t^4}{n^2}}}}$$
which is still a little ways from something reasonable.
We can use one approach as described in https://math.stackexchange.com/a/217251/86846 by considering the area of the same circle, especially if we take areas of triangles having height sides equal to the radius (i.e., $1$), and their bases as the same length calculation as used for our arc length, so each area is $\frac 12bh$, or
$$\frac 12\cdot 1\cdot\sqrt{\left(\sqrt{1-r^2h^2}-\sqrt{1-(r-1)^2h^2}\right)^2+h^2}$$
giving our total area formula (converging from overestimates) as
$$2\lim_{h\to 0} \sum_{r=1}^{\frac1h}\sqrt{\left\{\sqrt{1-(rh)^2}-\sqrt{1-((r-1)h)^2}\right\}^2 +h^2}$$
This approach only gives us that the circumference of the unit circle is twice the area, but at least it's a minor bit of progress.
For an alternate approach, consider taking a cue from https://tutorial.math.lamar.edu/classes/calcii/arclength.aspx on this formula and using one more "symmetry fold", allowing us to rewrite the initial limit as
$$8\lim_{h\to 0}\sum_{r=1}^{\frac 1{\sqrt2h}}h\sqrt{1+\left(\frac{-rh}{\sqrt{1-r^2h^2}}\right)^2}\\
=8\lim_{h\to 0}\sum_{r=1}^{\frac 1{\sqrt2h}}h\sqrt{1+\frac{r^2h^2}{1-r^2h^2}}\\
=8\lim_{h\to 0}\sum_{r=1}^{\frac 1{\sqrt2h}}\frac h{\sqrt{1-r^2h^2}}\\
=8\lim_{n\to\infty}\sum_{r=1}^\frac{\sqrt 2n}2\frac 1{\sqrt{n^2-r^2}}$$
but this fails to meet the professor's strict instructions...