Consider $T:C([0,2 \pi]) \rightarrow C([0,2 \pi]) $ $$ T(f(x)) =e^{ix} f(x). $$ Find dual operator $T^*: M([0,2 \pi]) \rightarrow M([0,2 \pi]) $.
Using the Riesz representation for $\mu \in M([0,2\pi])$ and definition of dual operator we can write $$ T^*\mu(f(x)) = \mu(T(f(x)) = \mu(e^{ix} f(x)) = \int_0^{2\pi} e^{ix} f(x) d \mu(x). $$ How can I express $T^* (\mu)$?
Thanks.