Variables a and b are integers: $b ≡ a \pmod {91}$ and $\gcd(a, 91) = 1$.
(a) Choose a positive number $k > 1$ so that $b^k ≡ a \pmod {91}$.
(b) What is $a \pmod {91}$ if $b = 53$?
Here is how I tried to do it:
a)
$b^k ≡ a \mod 91$
$b^{k-1}*b ≡ a*1 \pmod {91}$
$b^{k-1} ≡ 1\pmod {91}$
Now $\Phi (91) = 72$ gives $b^{72} = 1 \pmod {91}$ so k = 73.
b)
$53^{73} = 53^{72} * 53 ≡ 53\ \pmod {91}$
I am wondering if I got it right and if I made any algebraic blunders.
Thank you