I need to find integral of $\int_{0}^{\infty}\frac{x^{2}}{e^{x}+1}dx$. From this Riemann_zeta_function , it gives $\zeta\left( s\right) =\frac{1}{\Gamma\left( s\right) }\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}-1}dx$. Hence for $s=3$ this gives
\begin{align} \int_{0}^{\infty}\frac{x^{2}}{e^{x}-1}dx & =\zeta\left( 3\right) \Gamma\left( 3\right) \nonumber\\ & =2\zeta\left( 3\right) \tag{1}% \end{align}
My question is, how to use the above result to find integral of $\int% _{0}^{\infty}\frac{x^{2}}{e^{x}+1}dx$? Mathematica gives
\begin{equation} \int_{0}^{\infty}\frac{x^{2}}{e^{x}+1}dx=\frac{3}{2}\zeta\left( 3\right) \tag{2} \end{equation}
I tried to see if there is change of variable or other trick, but I do not see one. I do know about a direct method given in this answer here, but I want to see if it is possible, with some trick, to use the result from (1) to find (2).