Suppose $f(x)>0$,$f''(x)\leqslant0$,and $\lim\limits_{x\to+\infty}f(x)=+\infty$ on$[0,+\infty)$.prove that $$\lim\limits_{s\to0^+}\sum\limits_{n=0}^{\infty}\dfrac{(-1)^n}{f^s(n)}=\frac{1}{2}.$$ I tried to do it ,first of all we have $$\sum\limits_{n=0}^{\infty} \frac{(-1)^n}{f^s(n)}=\sum\limits_{n=0}^{\infty} \left( \frac{1}{f^s(2n)}-\frac{1}{f^s(2n+1)} \right).$$ Use MVT we have $$ \frac{1}{f^s(2n)}-\frac{1}{f^s(2n+1)}=-\frac{sf'(\xi_n)}{f^{s+1}(\xi_n)}(\xi_n\in(2n,2n+1)).$$ But next, I don't know how to deal with it. I want to ask that this problem can be solved by the property that the function is concave.
-
@夜愿1998 Please note that the use of gendered appellations and honorifics (brother, miss, dude, sir, ma'am, etc) are generally discouraged on this site. While such honorifics may be intended to show respect, it is easy to misgender folk, hence it is best to avoid their use entirely. – Xander Henderson Jan 27 '21 at 13:56
1 Answers
We can generalize @zhw's solution from Prove that $\lim\limits_{x\to 0^+}\sum\limits_{n=1}^\infty\frac{(-1)^n}{n^x}=-\frac12$.
Starting with your application of the mean-value theorem (note that you have a sign error), $$ \frac{1}{f^s(2n)}-\frac{1}{f^s(2n+1)}=\frac{sf'(\xi_n)}{f^{s+1}(\xi_n)} \le \frac{sf'(2n)}{f^{s+1}(2n)} $$ since $f$ is increasing and $f'$ is decreasing. It follows that $$ \sum_{n=0}^{\infty} \frac{(-1)^n}{f^s(n)} \le \sum_{n=0}^{\infty} \frac{sf'(2n)}{f^{s+1}(2n)} \le \frac{sf'(0)}{f^{s+1}(0)} + s\int_0^\infty \frac{f'(2t)}{f^{s+1}(2t)} \, dt = \frac{sf'(0)}{f^{s+1}(0)} + \frac{1}{2f^s(0)} \, . $$ Similarly, $$ \sum_{n=0}^{\infty} \frac{(-1)^n}{f^s(n)} \ge \sum_{n=0}^{\infty} \frac{sf'(2n+1)}{f^{s+1}(2n+1)} \ge s\int_1^\infty \frac{f'(2t)}{f^{s+1}(2t)} \, dt = \frac{1}{2f^s(1)} \, . $$ The result now follows by squeezing these estimates for $s \to 0$.

- 113,040
-
I need your help https://math.stackexchange.com/questions/4145002/how-to-prove-that-ux-leqslant-max-x-in-partial-omegaux-forall-x-in-omega – Hilbert1994 May 20 '21 at 01:42