3

I need a solution for this question. I've been trying out this question for days and I haven't been able to find out its solution yet. And some explanation would help too.

Show that the function f defined by: $$f(x):= \begin{cases} x^2\sin(1/x) &:\text{if $x \ne 0$} \\ 0 &:\text{if $x=0$} \end{cases}$$ is differentiable at $x=0$, and that $f'(0)=0$.

Lord_Farin
  • 17,743
  • http://math.stackexchange.com/questions/232672/show-that-the-function-gx-x2-sin-frac1x-g0-0-is-everywhere – Srijan May 23 '13 at 10:41

2 Answers2

5

Hint: We have $-x^2 \le f(x) \le x^2$, hence $$ -x \le \frac{f(x) - f(0)}{x-0} = \frac{f(x)}x \le x $$ for $x \ne 0$.

martini
  • 84,101
1

Hints:

$$\bullet\;\;\text{If $\,f,g\,$ are two functions defined in some punctured neighborhood I$_0$ of $\;x_0\;$ and s.t.:}$$

$$\begin{align*}(1)&\;\;\lim_{x\to x_0}f(x)=0\\{}\\ (2)&\,\exists\,M\in\Bbb R\;\;s.t.\;\;|g(x)|\le M\;\;\forall\,x\in\text{I}_0\end{align*}$$

$\;\;\;\;\;\;\;\;\;\;\;$then $\;\displaystyle{\lim_{x\to x_0}f(x)g(x)=0}$

$$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\bullet\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\lim_{x\to x_0}\frac{f(x)-f(0)}{x}=\lim_{x\to x_0}\;x\sin\frac1x\;\;\ldots\ldots$$

DonAntonio
  • 211,718
  • 17
  • 136
  • 287